13 research outputs found

    A review of deep learning techniques for detecting animals in aerial and satellite images

    Get PDF
    Deep learning is an effective machine learning method that in recent years has been successfully applied to detect and monitor species population in remotely sensed data. This study aims to provide a systematic literature review of current applications of deep learning methods for animal detection in aerial and satellite images. We categorized methods in collated publications into image level, point level, bounding-box level, instance segmentation level, and specific information level. The statistical results show that YOLO, Faster R-CNN, U-Net and ResNet are the most used neural network structures. The main challenges associated with the use of these deep learning methods are imbalanced datasets, small samples, small objects, image annotation methods, image background, animal counting, model accuracy assessment, and uncertainty estimation. We explored possible solutions include the selection of sample annotation methods, optimizing positive or negative samples, using weakly and self- supervised learning methods, selecting or developing more suitable network structures. Future research trends we identified are video-based detection, very high-resolution satellite image-based detection, multiple species detection, new annotation methods, and the development of specialized network structures and large foundation models. We discussed existing research attempts as well as personal perspectives on these possible solutions and future trends

    Surveying wildlife and livestock in Uganda with aerial cameras:Deep Learning reduces the workload of human interpretation by over 70%

    Get PDF
    As the need to accurately monitor key-species populations grows amid increasing pressures on global biodiversity, the counting of large mammals in savannas has traditionally relied on the Systematic-Reconnaissance-Flight (SRF) technique using light aircrafts and human observers. However, this method has limitations, including non-systematic human errors. In recent years, the Oblique-Camera-Count (OCC) approach developed in East Africa has utilized cameras to capture high-resolution imagery replicating aircraft observers’ oblique view. Whilst demonstrating that human observers have missed many animals, OCC relies on labor-intensive human interpretation of thousands of images. This study explores the potential of Deep Learning (DL) to reduce the interpretation workload associated with OCC surveys. Using oblique aerial imagery of 2.1 hectares footprint collected during an SRF-OCC survey of Queen Elizabeth Protected Area in Uganda, a DL model (HerdNet) was trained and evaluated to detect and count 12 wildlife and livestock mammal species. The model’s performance was assessed both at the animal instance-based and image-based levels, achieving accurate detection performance (F1 score of 85%) in positive images (i.e. containing animals) and reducing manual interpretation workload by 74% on a realistic dataset showing less than 10% of positive images. However, it struggled to differentiate visually related species and overestimated animal counts due to false positives generated by landscape items resembling animals. These challenges may be addressed through improved training and verification processes. The results highlight DL’s potential to semi-automate processing of aerial survey wildlife imagery, reducing manual interpretation burden. By incorporating DL models into existing counting standards, future surveys may increase sampling efforts, improve accuracy, and enhance aerial survey safety.</p

    Surveying wildlife and livestock in Uganda with aerial cameras: Deep Learning reduces the workload of human interpretation by over 70%

    Full text link
    peer reviewedAs the need to accurately monitor key-species populations grows amid increasing pressures on global biodiversity, the counting of large mammals in savannas has traditionally relied on the Systematic-Reconnaissance-Flight (SRF) technique using light aircrafts and human observers. However, this method has limitations, including non-systematic human errors. In recent years, the Oblique-Camera-Count (OCC) approach developed in East Africa has utilized cameras to capture high-resolution imagery replicating aircraft observers’ oblique view. Whilst demonstrating that human observers have missed many animals, OCC relies on labor-intensive human interpretation of thousands of images. This study explores the potential of Deep Learning (DL) to reduce the interpretation workload associated with OCC surveys. Using oblique aerial imagery of 2.1 hectares footprint collected during an SRF-OCC survey of Queen Elizabeth Protected Area in Uganda, a DL model (HerdNet) was trained and evaluated to detect and count 12 wildlife and livestock mammal species. The model’s performance was assessed both at the animal instance-based and image-based levels, achieving accurate detection performance (F1 score of 85%) in positive images (i.e. containing animals) and reducing manual interpretation workload by 74% on a realistic dataset showing less than 10% of positive images. However, it struggled to differentiate visually related species and overestimated animal counts due to false positives generated by landscape items resembling animals. These challenges may be addressed through improved training and verification processes. The results highlight DL’s potential to semi-automate processing of aerial survey wildlife imagery, reducing manual interpretation burden. By incorporating DL models into existing counting standards, future surveys may increase sampling efforts, improve accuracy, and enhance aerial survey safety

    AFRICLIM: high-resolution climate projections for ecological applications in Africa (https://www.york.ac.uk/environment/research/kite/resources/)

    Get PDF
    A growing body of research shows the importance of land use/cover change (LULCC) on modifying the Earth system. Land surface models are used to stimulate land–atmosphere dynamics at the macroscale, but model bias and uncertainty remain that need to be addressed before the importance of LULCC is fully realized. In this study, we propose a method of improving LULCC estimates for land surface modeling exercises. The method is driven by projectable socio-ecological geospatial predictors available seamlessly across sub-Saharan Africa and yielded continuous (annual) estimates of LULCC at 5 km  ×  5 km spatial resolution. The method was developed with 2252 sample area frames of 5 km  ×  5 km consisting of the proportion of several land cover types in Kenya over multiple years. Forty-three socio-ecological predictors were evaluated for model development. Machine learning was used for data reduction, and simple (functional) relationships defined by generalized additive models were constructed on a subset of the highest-ranked predictors (p ≤ 10) to estimate LULCC. The predictors explained 62 and 65 % of the variance in the proportion of agriculture and natural vegetation, respectively, but were less successful at estimating more descriptive land cover types. In each case, population density on an annual basis was the highest-ranked predictor. The approach was compared to a commonly used remote sensing classification procedure, given the wide use of such techniques for macroscale LULCC detection, and outperformed it for each land cover type. The approach was used to demonstrate significant trends in expanding (declining) agricultural (natural vegetation) land cover in Kenya from 1983 to 2012, with the largest increases (declines) occurring in densely populated high agricultural production zones. Future work should address the improvement (development) of existing (new) geospatial predictors and issues of model scalability and transferability

    Assessing Land Degradation and Desertification Using Vegetation Index Data: Current Frameworks and Future Directions

    Get PDF
    Land degradation and desertification has been ranked as a major environmental and social issue for the coming decades. Thus, the observation and early detection of degradation is a primary objective for a number of scientific and policy organisations, with remote sensing methods being a candidate choice for the development of monitoring systems. This paper reviews the statistical and ecological frameworks of assessing land degradation and desertification using vegetation index data. The development of multi-temporal analysis as a desertification assessment technique is reviewed, with a focus on how current practice has been shaped by controversy and dispute within the literature. The statistical techniques commonly employed are examined from both a statistical as well as ecological point of view, and recommendations are made for future research directions. The scientific requirements for degradation and desertification monitoring systems identified here are: (I) the validation of methodologies in a robust and comparable manner; and (II) the detection of degradation at minor intensities and magnitudes. It is also established that the multi-temporal analysis of vegetation index data can provide a sophisticated measure of ecosystem health and variation, and that, over the last 30 years, considerable progress has been made in the respective research

    A comparison of point and bounding box annotation methods to detect wild animals using remote sensing and deep learning

    No full text
    The point and bounding box are the two widely used annotation techniques for deep learning-based wild animal detection using remote sensing. However, the impact of these two annotation methods on the performance of deep learning is still unknown. Here, using a publicly available Aerial Elephant Dataset, we evaluate the effect of two annotation methods on model accuracy in two commonly used neural networks (YOLO and U-Net). The results show that when using YOLO, there are no statistically significant differences between the point and bounding box-based annotation methods, as indicated by an overall F1-score being 82.7% and 82.8% (df = 4, P = 0.683, t-test), respectively. While when using U-Net, the accuracy of the results based on bounding boxes with an overall F1-score of 82.7% is significantly higher than that of the point-based annotation method with an overall F1-score of 80.0% (df = 4, P &lt; 0.001, t-test). Our study demonstrates that the effectiveness of the two annotation methods is influenced by the choice of deep learning models. The result suggests that the deep learning method should be taken into account when deciding on annotation techniques for animal detection in remote sensing images

    Continuous and consistent land use/cover change estimates using socio-ecological data

    No full text
    A growing body of research shows the importance of land use/cover change (LULCC) on modifying the Earth system. Land surface models are used to stimulate land–atmosphere dynamics at the macroscale, but model bias and uncertainty remain that need to be addressed before the importance of LULCC is fully realized. In this study, we propose a method of improving LULCC estimates for land surface modeling exercises. The method is driven by projectable socio-ecological geospatial predictors available seamlessly across sub-Saharan Africa and yielded continuous (annual) estimates of LULCC at 5 km  ×  5 km spatial resolution. The method was developed with 2252 sample area frames of 5 km  ×  5 km consisting of the proportion of several land cover types in Kenya over multiple years. Forty-three socio-ecological predictors were evaluated for model development. Machine learning was used for data reduction, and simple (functional) relationships defined by generalized additive models were constructed on a subset of the highest-ranked predictors (p ≤ 10) to estimate LULCC. The predictors explained 62 and 65 % of the variance in the proportion of agriculture and natural vegetation, respectively, but were less successful at estimating more descriptive land cover types. In each case, population density on an annual basis was the highest-ranked predictor. The approach was compared to a commonly used remote sensing classification procedure, given the wide use of such techniques for macroscale LULCC detection, and outperformed it for each land cover type. The approach was used to demonstrate significant trends in expanding (declining) agricultural (natural vegetation) land cover in Kenya from 1983 to 2012, with the largest increases (declines) occurring in densely populated high agricultural production zones. Future work should address the improvement (development) of existing (new) geospatial predictors and issues of model scalability and transferability

    Satellite-based monitoring of the world’s largest terrestrial mammal migration using deep learning

    No full text
    Accurate, reliable, and up-to-date information on wildlife populations is crucial for biodiversity conservation in the face of unprecedented biodiversity loss worldwide. However, monitoring wildlife populations at large scales remains challenging. Advances in satellite remote sensing, particularly very-high-resolution satellite data, offer new opportunities for monitoring wildlife from space, and new machine learning techniques present great potential for detecting wildlife with remarkable speed and accuracy. Here, we introduce a deep learning pipeline for automatically detecting and counting large migratory ungulate herds (wildebeest and zebra) at the individual level in the Serengeti-Mara ecosystem from submeter-resolution satellite imagery. We apply the pipeline to implement the first-ever population census of large-size ungulates in the Serengeti-Mara ecosystem through a satellite survey and generate the total count of the whole population. The model shows robust performance across diverse landscapes with an overall F1-score of 84.75% (Precision: 87.85%, Recall: 81.86%) on an independent test dataset containing 11,594 animals and achieves good transferability spatially and temporally. This research showcases the capability of satellite remote sensing and deep learning techniques to accurately locate and count very large populations of terrestrial mammals in open landscapes. It provides a new perspective on monitoring wildlife populations and animal migration, which will facilitate the understanding of animal behavior and ecology as well as improve the conservation of the whole ecosystem in the face of rapid environmental changes

    Expansion of human settlement in Kenya's Maasai Mara: what future for pastoralism and wildlife?

    No full text
    corecore