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A B S T R A C T   

Deep learning is an effective machine learning method that in recent years has been successfully applied to detect 
and monitor species population in remotely sensed data. This study aims to provide a systematic literature review 
of current applications of deep learning methods for animal detection in aerial and satellite images. We cate-
gorized methods in collated publications into image level, point level, bounding-box level, instance segmentation 
level, and specific information level. The statistical results show that YOLO, Faster R-CNN, U-Net and ResNet are 
the most used neural network structures. The main challenges associated with the use of these deep learning 
methods are imbalanced datasets, small samples, small objects, image annotation methods, image background, 
animal counting, model accuracy assessment, and uncertainty estimation. We explored possible solutions include 
the selection of sample annotation methods, optimizing positive or negative samples, using weakly and self- 
supervised learning methods, selecting or developing more suitable network structures. Future research trends 
we identified are video-based detection, very high-resolution satellite image-based detection, multiple species 
detection, new annotation methods, and the development of specialized network structures and large foundation 
models. We discussed existing research attempts as well as personal perspectives on these possible solutions and 
future trends.   

1. Introduction 

Biodiversity is declining worldwide at an accelerating pace, with 
multiple negative impacts on a good quality of life (Pörtner et al., 2021). 
The latest World Wildlife Fund (WWF) Living Planet Report showed that 
the populations of mammals, birds, amphibians, reptiles, and fish 
declined by an average of 68 % between 1970 and 2016 (Almond et al., 
2020). However, monitoring global changes in biodiversity remains a 
major challenge because of the general lack of agreed international data 
standards and evaluation criteria (Turak et al., 2017). 

A recent important step in biodiversity monitoring is the Essential 
Biodiversity Variables (EBV) framework, developed by the Group on 
Earth Biodiversity Observation Network (GEO BON) with the aim of 
distilling the complexity of biodiversity into a manageable list of priority 
measurements (Pereira et al., 2013). The species population is one of the 
most fundamental and priority variables to be monitored, as recognized 
by the EBV framework and supported by subsequent studies (Skidmore 
et al., 2015; Brummitt et al., 2017; McRae et al., 2017; Jetz et al., 2019; 
Skidmore et al., 2021). 

Remote sensing has proven to be an important approach for moni-
toring species populations (Leyequien et al., 2007; Hollings et al., 2018; 
Skidmore et al., 2021). It has been demonstrated that some remote 
sensing platforms like unmanned aerial vehicles (UAVs, also called 
drones) can provide higher quality and more precise data than tradi-
tional ground counts (Hodgson et al., 2016). The remote sensing plat-
forms currently used for animal detection are aircraft and satellites. 
Aerial enumeration is a classic animal detection method, which has been 
routinely conducted in many parts of the world to estimate the abun-
dance of species and the rate of population growth (Jolly, 1969; Norton- 
Griffiths, 1978; Firchow et al., 1990; Mbugua, 1996; Chabot, 2009; 
Lamprey et al., 2020b; Delplanque et al., 2023b). In recent years, with 
the improvement of spatial resolution, satellite imagery has been 
increasingly used in animal detection (Yang et al., 2014; Xue et al., 
2017; Cubaynes et al., 2019; Goncalves et al., 2020). 

In animal detection based on remote sensing imagery, manual or 
visual detection (sometimes called “visual interpretation” or “ocular” 
detection) is still a commonly used method (Stapleton et al., 2014; 
Hodgson et al., 2016; Linchant et al., 2018; Bowler et al., 2020; Lamprey 
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et al., 2020b). These methods are costly and susceptible to subjectivity 
(Bowler et al., 2020). Automatic methods such as threshold methods, 
image differencing (LaRue et al., 2015), edge extraction algorithms (Lee 
et al., 2021), and traditional machine learning methods like Support 
Vector Machines (SVM, Cortes and Vapnik, 1995; van Gemert et al., 
2015) and wavelet transforms (Farge, 1992; Bentley and McDonnell, 
1994) have also been used to detect animals in remotely sensed images. 
However, their accuracy is unsatisfactory and still needs improvement 
(Goncalves et al., 2020). 

Deep learning, a branch of Artificial Neural Networks (ANNs), has 
developed rapidly in recent years. Deep learning networks have multiple 
levels of data representation organized by abstractions, features, or 
concepts, while traditional ANN models typically have only one or two 
hidden layers (Oliveira et al., 2016). The key aspect of deep learning is 
that the layers of features are learned from data via a general-purpose 
learning procedure, not designed by human engineers, so it can easily 
take advantage of increases in the amount of available computation and 
data (LeCun et al., 2015). The aforementioned authors note that deep 
learning has significant advantages over traditional machine learning 
methods thanks to its efficient use of Graphics Processing Units (GPUs), 
activation functions like Rectified Linear Unit (RELU, Glorot et al., 
2011), and regularization techniques like dropout (Srivastava et al., 
2014); it has since been further improved with data augmentation 
methods like mixup (Zhang et al., 2018) and mosaic (Bochkovskiy et al., 
2020). 

Deep learning has achieved good results in image processing fields 
such as object detection (Ren et al., 2017), semantic segmentation 
(Ronneberger et al., 2015) and instance segmentation (He et al., 2017), 
and its extraction accuracy is superior to that of other machine learning 
algorithms (Osco et al., 2021). It enables the detection of animals 
occupying three pixels in remote sensing images (Wu et al., 2023) and 
can also yield specific information such as the posture and body length 
of animals in higher spatial resolution images (Mücher et al., 2022). 
Deep learning has been able to surpass manual detection results of cit-
izen scientists in certain animal detection tasks (Torney et al., 2019). 
Compared to manual detection, one of the advantages of deep learning is 
that it is insensitive to interference factors such as shooting distance, 
shooting angle, and changes in animal body size (Eikelboom et al., 
2019). 

To our knowledge there has so far been no comprehensive review of 
animal detection based on deep learning and remote sensing. Wang 
et al., (2019a) reviewed studies on wildlife detection, with a particular 
emphasis on different remote sensing platforms. Tuia et al. (2022) wrote 
a perspective article on machine learning for wildlife conservation, 
aiming to link ecology and machine learning to showcase how relevant 
technological advances can be leveraged to address urgent animal 
conservation challenges. But their paper did not focus on deep learning 
methods. Yousefi et al. (2022) studied the application of deep learning 
and UAV platforms in livestock detection, but included some very low 
altitude side-view photos of animals and did not consider other remote 
sensing platforms like manned aircraft and satellites. In this review 
paper, we aim to provide a systematic literature review of current ap-
plications of deep learning methods for animal detection in aerial and 
satellite images. Specifically, we seek to answer the following questions: 
1) which deep learning algorithms are most commonly used for 
detecting animals in aerial and satellite images? 2) what are the main 
challenges associated with the use of these algorithms? 3) What are the 
potential solutions to these challenges? and 4) what is the future 
research direction in this field? 

2. Methodology 

The main method we used to search for papers was to search by 
keywords, using the search string: TS = ((animal* OR wild animal* OR 
wildlife* OR livestock* OR mammals* OR bird* OR amphibians* OR 
reptile* OR fish* OR insect* OR animal) AND (satellite* OR drone* OR 

UAV* OR MAV* OR aircraft* OR aerial*) AND (deep learning* OR 
machine learning* OR artificial intelligence* OR CNN* OR convolu-
tional neural network*)). We mined four databases: Web of Science (htt 
ps://www.webofscience.com/wos), SCOPUS (https://www.scopus. 
com), Google Scholar (https://scholar.google.com), and the preprint 
platform ArXiv (https://arxiv.org). We included ArXiv because some 
influential research related to deep learning like YOLOv3 (Redmon and 
Farhadi, 2018) is published exclusively on this non peer-reviewed 
platform. 

We searched the references of the publications we found and 
screened for relevant papers. As studies used public datasets, we also 
searched for papers based on public data from Zenodo (https://zenodo. 
org/) and Kaggle (https://www.kaggle.com/datasets) and included 
papers that we deemed to be relevant. 

3. The collated papers 

The cut-off date for our search was December 31, 2023. We found a 
total of 98 papers (excluding reviews). Fig. 1 shows the number of 
publications on animal detection based on deep learning and remote 
sensing; their number has increased greatly since 2017. 

The worldwide distribution of the species studied is shown in Fig. 2. 
The research area covers seven continents; most studies were in Africa. 
The African animals studied are mainly wild animals on the savannahs, 
while the Oceania animal research focusses primarily on farm livestock 
and marine animals. Europe and South America are also major research 
areas for livestock detection. 

4. Remote sensing platform 

The primary remote sensing platforms utilized for animal detection 
are aircraft and satellites. The use of different platforms in each year’s 
publications is shown in Fig. 3. The figure shows that studies using 
images acquired by UAVs were steadily increased over the years. 

4.1. Aircraft 

4.1.1. Unmanned aerial vehicles (UAVs) 
UAVs have the advantages of miniaturization, high maneuverability, 

and the ability to perform more flexible tasks than manned aircraft and 
satellites; their disadvantages, particularly for large area wildlife 
enumeration, include low endurance and range, slow flight speeds and 
security issues. The flight altitude of UAVs can be changed in time to 
avoid clouds and obstacles, and the flight plan can also be adjusted to 
deal with the actual situation of animal activities (Naudé and Joubert, 
2019). Currently, most images captured by UAVs in the collated papers 
are colour images composed of red, green, and blue bands (72 out of 77). 

Fig. 1. Number of publications on animal detection based on deep learning and 
remote sensing from 2017 to 2023. 

Z. Xu et al.                                                                                                                                                                                                                                       

https://www.webofscience.com/wos
https://www.webofscience.com/wos
https://www.scopus.com
https://www.scopus.com
https://scholar.google.com/
https://arxiv.org/
https://zenodo.org/
https://zenodo.org/
https://www.kaggle.com/datasets


International Journal of Applied Earth Observation and Geoinformation 128 (2024) 103732

3

Eight papers used thermal infrared imagery, accounting for 10.4 % of all 
studies using UAVs (Bondi et al., 2020; Ulhaq et al., 2021; Hinke et al., 
2022; Chen et al., 2023a; Barrios et al., 2023; Krishnan et al., 2023; Xie 
et al., 2023; Zhang and Cai, 2023). In the papers we collated, other 
remote sensing platforms have not yet utilized thermal imagery. In 
terms of flight modes, most UAVs currently used in animal detection are 
multi-rotor UAVs and fixed-wing UAVs. 

Recently, with the rapid development of consumer-grade UAVs, 
animal detection based on multi-rotor UAVs has been extensively 
studied. Commonly used multi-rotor UAV platforms include the DJI 
Phantom and Mavic series (Andrew et al., 2020; Barbedo et al., 2020a; 
Kellenberger et al., 2021; Petso et al., 2021; Sarwar et al., 2021; Shao 
et al., 2020). In the studies using multi-rotor UAVs, the reported spatial 
resolution could attain 1 cm. Some studies did not record spatial reso-
lution, especially those with low flight altitudes with presumed higher 
spatial resolution (Andrew et al., 2021; Sundarama and Loganathan, 
2020). 

The ability of multi-rotor UAVs to hover allows the influence of 
flying height to be studied. Sarwar et al. (2021) set two heights (80 m 

and 120 m) to study the detection of sheep. Petso et al. (2021) set eight 
heights of 15 m, 20 m, 30 m, 40 m, 50 m, 70 m, 90 m, 110 m, and 130 m 
for livestock detection and found that an increase in altitude to minimize 
animal disturbance reduces detection ability. In addition, the optimal 
deep learning input resolution can also be determined by analyzing the 
structure and parameters of the neural network as the multi-rotor UAVs 
can ensure a stable flight height (Shao et al., 2020). 

Fixed-wing UAVs are another commonly used UAV platform. They 
are often capable of covering a larger research area than multi-rotor 
UAVs. For instance, in a wildlife survey, over 600 acres were covered 
using the SenseFly eBee fixed-wing UAV (Shao et al., 2020). In terms of 
image quality control, fixed-wing UAVs are more prone to problems like 
image blur and sensor artifacts (Naudé and Joubert, 2019). SAVMAP is a 
widely used fixed-wing UAV wildlife dataset (Ofli et al., 2016) based on 
five flight missions over Kuzikus Park in eastern Namibia using a light 
monoplane UAV (SenseFly eBee). 

4.1.2. Manned aircraft 
Manned aircraft are also commonly used to detect animals by 

acquiring images vertically (Couturier et al., 1996; Norton-Griffiths, 
1973) or obliquely (Lamprey et al., 2020b). In some cases, the flight 
altitude and the quality of images obtained by manned aircraft are 
similar to those of fixed-wing UAVs. However, manned aircraft have a 
higher altitude limit than UAVs: the highest flying-height mentioned in 
the 98 papers was over 500 m for manned aircraft (Naudé and Joubert, 
2019), and 350 m for UAV (Ma et al., 2022; Peng et al., 2020). Currently, 
all research on manned aircraft images used Red-Green-Blue (RGB) 
three-band images according to the papers we collated. 

The datasets for manned aircraft often come from wildlife surveys. 
The most used public dataset is the Aerial Elephant Dataset (AED, Naudé 
and Joubert, 2019). It is a collection of 2,101 aerial images of elephants 
in south central Africa. The images contain a total of 15,511 African 
elephants in different environmental backgrounds with spatial resolu-
tion from 2.4 cm to 13 cm. Table 1 lists the currently publicly available 
animal detection datasets and describes the relevant properties of the 
datasets. 

Fig. 2. Species studied in publications on animal detection based on deep learning and remote sensing from 2017 to 2023, indicating the global geographic dis-
tribution of the animals in studies. The position of species within the same continent is not distinguished. Details on the species and on the precise location of the 
studies can be found in Appendix 2. 

Fig. 3. Number of publications using different remote sensing platforms from 
2017 to 2023. 
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4.2. Satellites 

The application of satellite data for animal detection primarily uses 
high-resolution images, with spatial resolution of 30 – 50 cm (Goncalves 
et al., 2020; Laradji et al., 2020; Bowler et al., 2020; Duporge et al., 
2021; Robinson et al., 2021; Mücher et al., 2022). Brown et al. (2022) 
obtained images of different spatial resolutions through simulation and 
showed that 50 cm is the resolution threshold required for deep learning 
to be applied to cattle sized animals. Animals that have been successfully 
detected by high-resolution satellite imagery include elephants 
(Duporge et al., 2021), wildebeests (Yang et al., 2014; Wu et al., 2023), 
albatrosses (Bowler et al., 2020), seals (Goncalves et al., 2020), cattle 
(Laradji et al., 2020), and whales (Borowicz et al., 2019). However, at 
present satellite images are only used to identify single species (or 
classify different species into one category), and no research has yet 
shown that the images can be used to simultaneously identify different 
species when using deep learning methods. In the collated papers, most 
satellite-based studies (6 out of 9) used pansharpened Red-Green-Blue 
(RGB) bands. Only two studies directly used a single panchromatic 
band (Goncalves et al., 2020; Robinson et al., 2021), and one study used 
four bands containing near-infrared (RGB-NIR, Wu et al., 2023). In 
addition, there are currently no publicly available very high-resolution 
commercial satellite data in animal detection based on the collated 
papers. 

Compared to aerial imagery, satellite imagery has greater spatial 
coverage and is ideal for large and remote areas (Hollings et al., 2018; 
Goncalves et al., 2020). However, high-resolution commercial satellite 

data is expensive (Bhardwaj et al., 2016), and its spatial resolution is still 
lower than that of many images obtained from aircraft. In terms of 
sampling strategies, satellites have fixed flight orbits and image pa-
rameters. For instance, WorldView-3 has a swath width of 13.1 km. Its 
revisit frequency is approximately one day, which ensures consistency in 
the data parameters and quality but makes it difficult to obtain repeated 
observation data on specific animal targets because of cloud cover and 
animal movement. The arrangement for acquiring aerial images from 
aircraft can be more flexible. The repeated observation area can be set 
according to each mission, and adjustments can be made, such as 
altering the flight altitude to take account of cloud cover (Hollings et al., 
2018). Timely repeated area detection can provide richer data sources 
for post-processing. Although the flexible flight mode may result in 
inconsistent data quality (e.g., different spatial resolutions), corrections 
can be made based on flight parameters (Naudé and Joubert, 2019). 

5. Deep learning methods for animal detection 

5.1. Overview of methods 

In general, research on animal detection covers several basic fields of 
image processing based on deep learning: scene recognition (He et al., 
2016; Gao et al., 2021), object detection (Redmon et al., 2016), semantic 
segmentation (Ronneberger et al., 2015) and instance segmentation (He 
et al., 2017). Image annotation is the process of labelling images for 
computer vision tasks, which is the key prerequisite for successful deep 
learning applications. We therefore classified the current deep learning- 

Table 1 
Description of publicly available datasets.  

Dataset names (ref) Species Locations Remote sensing 
platforms 

Number of 
objects 

URL 

SAVMAP (Ofli et al., 2016) multiple species (e.g., black rhino, 
zebra) 

Namibia UAV 1,183 https://zenodo.org/records/1204408 

BIRDSAI (Bondi et al., 2020) animal (e.g., elephant, lion, giraffe, 
crocodile) 

South Africa, 
Malawi, Zimbabwe 

UAV 220,000 https://sites.google.com/view/elizabeth 
bondi/dataset 

AnimalDrone (Zhu et al., 
2021) 

horse, sheep, zebra, giraffe, wolf, 
cow, yak, dog, antelope, boar 

A: China B: web UAV 4,049,168 
(video) 

https://github.com/VisDrone/Ani 
malDrone 

WAID (Mou et al., 2023) sheep, cattle, seal, camel, kiang, 
zebra 

web UAV 14,275 https://github.com/xiaohuicui/WAID 

(Shao et al., 2020) cattle Japan UAV 1,948 http://bird.nae-lab.org/cattle/ 
(Han et al., 2019) livestock  UAV 4,996 https://github.com/hanl2010/Aerial-li 

vestock-dataset/releases 
(Gray et al., 2019b) sea turtle Costa Rica UAV 2,161 https://doi.org/10.5061/dryad.5h06vv2 
(Desai et al., 2022) crocodile India UAV 480 https://doi.org/10.5061/dryad. 

s4mw6m98n 
Aerial Seabirds West Africa ( 

Kellenberger et al., 2021) 
seabird (African royal tern, Caspian 
tern, slender-billed gull, grey-headed 
gull) 

West African coast UAV 21,516 https://lila.science/datasets/aerial-se 
abirds-west-africa/ 

(Hinke et al., 2022) penguin, fur seal Antarctica UAV 6,314 https://zenodo.org/records/6714100 
(Hayes et al., 2021) penguin, albatross Falkland (Malvinas) 

Islands, England 
UAV 44,970 https://research.repository.duke.edu/co 

ncern/datasets/kp78gh20s?locale 
BEE4EXP (Stojnić et al., 2021) honeybee Croatia UAV 576 (video) https://zenodo.org/records/7253878 
(Weinstein et al., 2022) bird worldwide UAV > 250,000 https://doi.org/10.5281/zenodo.5033174 
SheepCounter (Doll and Loos, 

2023) 
sheep  UAV 209,943 https://universe.roboflow.com/riisprivate 

/sheepcounter 
ISOD, (Zhang and Cai, 2023) elephant South Africa, 

Malawi, Zimbabwe 
UAV 22,837 https://zenodo.org/records/10020732 

(Krishnan et al., 2023) deer, cattle, horse United States UAV 478 https://projectportal.gri.msstate. 
edu/awir/ 

AED (Naudé and Joubert, 
2019) 

elephant South Africa, 
Botswana, Zambezi 

Manned aircraft 15,581 https://zenodo.org/records/3234780 

(Eikelboom et al., 2019) zebra, elephant, giraffe Kenya Manned aircraft 10,824 https://data.4tu.nl/articles/_/1271 
3903/1 

(Chabot et al., 2022) polar bear Baffin Bay, Canada Manned aircraft 21 https://www.sciencedirect.com/science/ 
article/pii/S1574954121003381?via% 
3Dihub 

(Qian et al., 2023) penguin Antarctica Manned aircraft 137,365 https://doi.org/10.5061/dryad. 
8931zcrv8 

(DataCanary et al., 2017) sea lion Western Aleutian 
Islands 

Manned aircraft 
and UAV 

83,677 https://www.kaggle.com/competitions/ 
noaa-fisheries-steller-sea-lion-populatio 
n-count/  
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based animal detection studies into five categories: image level, point 
level, bounding box level, instance segmentation level, and specific in-
formation level based on the image annotation method and the degree of 
richness of the animal information obtained. These are shown dia-
grammatically in Fig. 4. Image level refers to judging whether an image 
contains the target animals. The images here can also be sub-images in a 
larger image. Point level refers to using points to mark the location of 
animals. The point here is usually the geometric center of the animal 
(Padubidri et al., 2021; Sarwar et al., 2021). In addition, point level also 
includes research using density maps generated from points. Bounding 
box level refers to studies that use rectangular boxes to mark animals. 
Instance segmentation refers to identifying and differentiating individ-
ual objects within an image, usually obtaining the precise boundaries 
while using bounding boxes. Specific information level refers to studies 
that can extract more information about animals, such as their posture 
and body length. 

We counted the number of publications using methods at different 
detection levels from 2017 to 2023. From Fig. 5, we observe that the 
bounding box is the most commonly used detection level, which has 
generally increased over the years compared to the use of other detec-
tion levels. 

We have detailed the dataset parameters, deep learning models, 
specific tasks and other information used in each study at each detection 
level in Appendix 1. To provide a more detailed visualization of the 
current use of deep learning algorithms in the collated papers, we syn-
thesized spatial resolution and species information, and aggregated 
them together with deep learning networks in Fig. 6. Backbone CNN in 
this figure indicates studies that used or improved the base models such 
as ResNet and VGG. The information presented on spatial resolution is 
incomplete because it was not always explicitly stated in the collated 
papers. 

Fig. 6 shows that the most used models are YOLO, Faster R-CNN, U- 
Net, and Backbone CNN (55.6 % used ResNet) and that current studies 
are mainly based on point level and bounding box level. The same neural 

network model can be applied at different detection levels, but at each 
level there are some dominant neural networks. At the bounding box 
level, over half of the studies used YOLO and Faster R-CNN networks. At 
the point level, U-Net and Backbone CNN dominate, and some other 
networks (e.g., fully convolutional network, FCN) have similar functions 
to U-Net. In the next section, the specific methods used at each level will 
be introduced and analyzed. 

Research on animal detection can directly use existing deep learning 
methods, or it can improve or create new methods. Based on this, we 
divided the existing research into three categories: standard models, 
modified models and new models. The results are shown in Fig. 7. Most 
of the current research uses off-the-shelf computer vision models. The 
popular deep learning frameworks TensorFlow and PyTorch have both 
released their own object detection APIs and have been used in animal 
detection research (Duporge et al., 2021; Kabra et al., 2022). However, 

Fig. 4. The categorization of animal detection at different levels according to the image annotation method and the degree of richness of the animal information 
obtained. Because of limitations (the memory limit of the graphics card) the original image must be split into several sub-images. The image level directly identifies 
whether an animal is contained in a sub-image, but it does not yield the precise location. The point level, bounding box level, and instance seg[mentation] level mark 
the animal’s location by different methods. The image above illustrating the specific info[rmation] level depicts extracting the length of the elephants, showing that 
more detailed information can be detected at this level. 

Fig. 5. Number of publications using deep learning methods at different 
detection levels from 2017 to 2023. 
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at the point level, more research uses new or modified deep learning 
models. Table 2 shows the current studies that have shared their code, 
which refers to the code created by the authors themselves. Research 
that directly uses open-source code or software is not listed in the table. 

5.2. Deep learning methods used at different detection levels 

5.2.1. Image level 
Image level refers to directly identifying whether an image contains 

the animal objects without obtaining the location of the animals. In 
practical applications, it is common to divide the original image into 

sub-images (also called blocks) and then determine whether each sub- 
image contains the animal objects, e.g., “cattle” or “non-cattle” (Bar-
bedo et al., 2019). Fig. 8 uses elephant detection as an example to 
illustrate the principle of the method. One of the most common ways to 
obtain sub-images is through a sliding window. By identifying the sub- 
image information acquired by the sliding window, the position of the 
animal objects in the image can also be roughly located (Dujon et al., 
2021; Rivas et al., 2018). Although the image level can only roughly 
locate animal objects, the methods at this level are very fast in sample 
generation and model execution, so they are also widely used. The image 
level method is also usually used to pre-select the area containing ani-
mals and then accurately locate the animal positions using subsequent 
methods, e.g., traditional image processing methods like quadrant 
distinction and threshold methods (Barbedo et al., 2020b) and deep 
learning methods (Rahnemoonfar et al., 2019). 

5.2.2. Point level 
Point level represents the locations of the animals by points, usually 

the centroids. Since a single point is usually not directly used for 
network training, most studies expand points into density maps or other 
forms before training or within the deep learning algorithms. 

There are currently three methods for point expansion. (1) Directly 
expanding circular or square areas centered on the points, and the area 
are assigned the same pixel values (Bowler et al., 2020; Wu et al., 2023). 
(2) Using algorithms like Gaussian kernel to obtain the density maps 
(Goncalves et al., 2020). A density map is a way to show where points or 
lines may be concentrated in each area and is also called intensity 
heatmap (Goncalves et al., 2020), intensity map (Laradji et al., 2020; 
Padubidri et al., 2021) or confidence map. (3) Generating the border 
class around the points (Kellenberger et al., 2018). 

There are also different ways to regress the results to points. (1) After 

Fig. 6. An overview of the deep learning methods used in animal detection from 2017 to 2023. The first column is the spatial resolution of the image. The second 
column indicates the types of animals studied. The third column is the neural network structure used in the study. Backbone CNN refers to the use or adjustment of 
basic networks like VGG and ResNet. These networks can be used independently for image recognition, or they can serve as the backbone of other networks. The last 
column shows the different detection levels. 

Fig. 7. Number of ways to use deep learning algorithms at different detection 
levels. ‘Standard model’ means using standard computer vision model, ‘Modi-
fied model’ means adapting the models to the animal detection tasks, ‘New 
model’ means designing new model specifically tailored to the task. 
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thresholding the final feature maps, the centers of the resulting con-
nected regions can be considered as the target points (Naudé and Jou-
bert, 2019). (2) Obtaining the target points through clustering 
algorithms such as K-Means (Wu et al., 2023), local maximum algo-
rithms (Delplanque et al., 2023a), Mean Shift and Gaussian Mixture 
Model (Sarwar et al., 2021; Wu et al., 2023). The regression can be 
included in the deep learning training process and the network then 
directly outputs the point coordinates of the animals, enabling the loss 
function to be calculated from the point information (Sarwar et al., 
2021). It is also possible to let the neural network generate density maps 
or classification maps, and then further regress the maps to point co-
ordinates (Bowler et al., 2020, an example is shown in Fig. 9). 

Methods at point level are commonly used because in many cases the 
animal detection task only requires the animal’s location to be ascer-
tained and does not need more complex information (e.g., the animal’s 
contours). Methods at this level are mainly based on backbone networks 
or fully convolutional networks for semantic segmentation (the pixel- 
level classification, Ronneberger et al., 2015). The most network 
structure used most in point level detection is U-Net. It is a classical 
semantic segmentation model that was developed in medical science but 
yields good results for remote sensing images (Naudé and Joubert, 2019; 
Padubidri et al., 2021; Sarwar et al., 2021). 

Because density maps are commonly used, some researchers refer to 
the methods they used at point level as density map based. However, 
density maps are widely used in various convolutional neural networks. 
For example, CenterNet is also based on density mapping and has been 
successfully used for bounding box level detection (Zhou et al., 2019). 
Therefore, in this review we do not consider the use of density maps as a 
level distinguishing criterion. 

5.2.3. Bounding box level 
Methods at this level are currently the most widely used. As shown in 

Fig. 4, the bounding box is a rectangular box that encloses the animal 
object. Methods at this level can directly correspond to object detection 
methods in computer vision. The networks can be divided into anchor- 
based and anchor-free approaches depending on whether an anchor box 
is predetermined. 

Anchor boxes are the predefined rectangular boxes before network 
training; they can be defined empirically or by clustering the training 
samples (Redmon and Farhadi, 2018). The most commonly-used an-
chor-based network structures are YOLO series or Faster R-CNN. YOLO 

is a one-stage detector that uses a single neural network to directly 
locate and classify objects. YOLO v1-v3 were developed by Joseph 
Redmon (Redmon et al., 2016; Redmon and Farhadi, 2017; Redmon and 
Farhadi, 2018), and v4-v9 (Bochkovskiy et al., 2020; Jocher et al., 2020; 
Li et al., 2022a; Wang et al., 2023, 2024; Ultralytics., 2023) were 
developed by other researchers (v6 and subsequent models are anchor- 
free or offer anchor-free variations). Fig. 10 shows an example of a 
flowchart for detecting animals using this type of method; the network 
structure in the figure is a simplified YOLOv3. Faster R-CNN is a widely 
used two-stage detector, developed from R-CNN (Girshick et al., 2014) 
and Fast R-CNN (Girshick, 2015). The first stage in this network is to find 
the possible anchor boxes of the objects, and the second stage is to 
classify these anchor boxes. 

These anchor based network structures have been used to detect 
animals such as cattle (Brown et al., 2022; Mücher et al., 2022), birds 
(Hong et al., 2019), elephants (Eikelboom et al., 2019; Duporge et al., 
2021), zebras (Eikelboom et al., 2019; Petso et al., 2021), giraffes 
(Eikelboom et al., 2019; Petso et al., 2021), wildebeest (Petso et al., 
2021), and eagle rays (Desgarnier et al., 2022). Fig. 10 shows the process 
of detecting elephants. There are also studies that refined these networks 
to make them more suitable for animal detection (Torney et al., 2019; 
Peng et al., 2020). 

The methods at the bounding box level can also be implemented 
without anchors. For instance, as mentioned in 5.2.2, CenterNet is based 
on density map. In recent years, the anchor-free method has increasingly 
attracted attention. It does not require preset anchors, has a high degree 
of automation, and maintains high detection accuracy. Currently, only a 
small number of studies on animal detection have utilized anchor-free 
networks, such as FSSCaps-DetCountNet (Sundarama and Loganathan, 
2020) and Deformable DETR (Moreni et al., 2023). 

5.2.4. Instance segmentation level 
Instance segmentation can be considered as a special kind of image 

segmentation that involves identifying and separating each individual 
object (instance) within an image (Fig. 11). Generally, the images must 
have high spatial resolution to enable the extraction of useful features. 
The networks are usually modified bounding box level networks. The 
main method is Mask R-CNN (He et al., 2017); it has been used to detect 
cattle (Xu et al., 2020a; Xu et al., 2020b), sheep (Xu et al., 2020b; Luo 
et al., 2022), horses (Luo et al., 2022), kiangs (Luo et al., 2022), and 
whales (Gray et al., 2019). 

Table 2 
A list of the publicly accessible source code that was created and shared by authors.  

Species Deep learning models Detection 
level 

URL Reference 

whale ResNet, DenseNet image https://zenodo.org/records/3356970 (Borowicz et al., 
2019) 

sea turtle backbone CNN image https://zenodo.org/records/1973808 (Gray et al., 2019b) 
livestock VAE-GRF image https://github.com/HGangloff/vae_grf (Gangloff et al., 

2023) 
snow goose backbone CNN point https://github.com/Connor-Bowley/neuralNetwork (Bowley et al., 2018) 
cattle CSRNet, LCFCN point https://github.com/IssamLaradji/cownter_strike (Laradji et al., 2020) 
seal SealNet (derived from U-Net) point https://github.com/iceberg-project/Seals/tree/paper/Sea 

lNet_code 
(Goncalves et al., 
2020) 

honeybee U-Net like point https://github.com/vladan-stojnic/Detection-of-Small-Flyi 
ng-Objects-in-UAV-Videos 

(Stojnić et al., 2021) 

donkey, camel, sheep, 
goat 

HerdNet (derived from CenterNet) point https://github.com/Alexandre-Delplanque/HerdNet (Delplanque et al., 
2023a) 

penguin VGG-19 point https://doi.org/10.5061/dryad.8931zcrv8 (Qian et al., 2023) 
wildebeest U-Net point https://github.com/zijing-w/Wildebeest-UNet (Wu et al., 2023) 
bird Retinanet (Resnet 50 as backbone) bounding 

box 
https://zenodo.org/records/5156926 (Barbedo et al., 

2019) 
wildebeest modified YOLOv3 bounding 

box 
https://zenodo.org/records/2562058 (Torney et al., 2019) 

elephant, animal form 
SAVMAP 

YOLO v3 with super-resolution and altitude- 
augmented module 

bounding 
box 

https://github.com/Mowen111/SALT (Xue et al., 2022) 

crocodile Inception v3, YOLO v5 bounding 
box 

https://doi.org/10.5061/dryad.s4mw6m98n (Desai et al., 2022)  
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5.2.5. Specific information level 
After identifying the species, location and numbers of the target 

animals, further analysis can obtain more information about the target 
animals. Using YOLOv3, Mücher et al. (2022) distinguished three poses 
of cattle (standing, grazing, and lying). Lenzi et al. (2023) differentiated 
between calves and adults in caribou. Mcilwaine et al. (2021) used deep 

convolutional network for jellyfish bloom detection and split images 
into two classes: ‘Bloom present’ and ‘No bloom present’. Animal body 
length can also be detected: Gray et al. (2019) used the instance seg-
mentation results on whale objects to derive the principal direction by 
principal component analysis, and then obtained more accurate whale 
length information. Studies currently typically rely on images with very 

Fig. 8. An example of image level animal detection. In this case, sub-images are identified as “Elephant” or “Non-elephant”.  

Fig. 9. An example of point level animal detection using the U-Net network (Ronneberger et al., 2015) and density map. The original point annotations are expanded 
into density maps through the Gaussian kernel function, and then the point results are obtained by regressing the output density maps. 

Fig. 10. An example of bounding box level animal detection process. The network structure is a simplified YOLOv3 network (Redmon and Farhadi, 2018). The input 
label is the coordinate position and object type (species of animal) of the bounding box marked in text form. Finally, the neural network generates predicted boxes of 
animal objects through multiple scales. 
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high spatial resolutions, or the animals studied are large in size. Like 
instance segmentation level, there are currently few studies of this kind, 
but there is great potential for future development. 

5.3. Model evaluation techniques 

5.3.1. Basic metrics 
The most used basic evaluation metrics are precision, recall, and 

comprehensive accuracy score (F-measure, Chinchor, 1992). The met-
rics take the sample label as the ground truth value and the output result 
of deep learning method as the predicted value. The precision and recall 
are obtained by: 

Precision =
TP

TP + FP
(1)  

Recall =
TP

TP + FN
(2)  

where TP indicates the number of true positives and FP indicates the 
number of false positives (detection errors). FN indicates false negatives, 
i.e., the number of correct values that have not been detected. On this 
basis, the F-measure can be obtained by: 

F =

(
1 + β2)⋅Precision⋅Recall
β2⋅Precision + Recall

(3)  

Precision represents the correct proportion of detected animal objects, 
recall represents the detected proportion of actual animal objects, and 
the F-measure can more comprehensively represent the accuracy of 
detection. The value of β can influence the weighting of precision and 
recall in the overall precision evaluation. Whenβ = 1, it is the currently 
most used F1-measure (also called F1-score). 

Another commonly used precision evaluation index is the mean 
Average Precision (mAP). This method first draws the P-R curve ac-
cording to the Precision and Recall under different thresholds, and then 
uses the area under the curve as the average precision. 

5.3.2. Specific accuracy evaluation metrics 
(1) Accuracy based on bounding box. 
Intersection Over Union (IOU) ranges from 0 to 1, representing the 

ratio of the intersection area to the union area between the predicted 
bounding box and the true bounding box (see Fig. 12). When IOU = 0, 
the predicted box and the real box do not intersect; when IOU = 1, the 
predicted box and the real box overlap completely. 

(2) Accuracy based on point. 

A predicted point that is within a specified distance from a point or 
points in the ground truth samples is considered as a correct detection. 
The distance can be the distance between pixels (Naudé and Joubert, 
2019; Goncalves et al., 2020) or the real-world distance (Kellenberger 
et al., 2021). 

(3) Accuracy based on the density map. 
In some studies, the density map predicted by the deep network is 

used directly for calculating accuracy, and the ground truth of the 
density map is generally generated from points (Rahnemoonfar et al., 
2019; Padubidri et al., 2021; Zhu et al., 2021). The main evaluation 
metrics are Mean Absolute Error (MAE), Root Mean Square Error 
(RMSE) and Grid Average Mean absolute Error (GAME). 

6. Challenges in animal detection 

6.1. Data imbalance 

Images for total counts, sample counts, or straightforward animal 
detection are usually acquired over an area that is much larger than the 
target animals. In some images, animals will be densely clustered in a 
small area, whereas many other images may be negative (contain no 
animals). Data imbalance refers to this pixel imbalance between fore-
ground information (animal objects) and background information. Some 
studies have proposed solutions to this problem; the four main solutions 
are summarized below. 

(1) Optimization of sample datasets. 
The most direct way to deal with data imbalance is to adjust the 

training samples. In most cases, the number of negative samples (sam-
ples that do not contain animals) exceeds the number of positive sam-
ples. Therefore, one solution is to increase the number of positive 
samples; another is to reduce the number of negative samples. 

Positive samples are frequently augmented in animal detection. For 
instance, when detecting stingrays, Chou et al. (2018) opted for a data 

Fig. 11. An example of instance segmentation level animal detection. ROI = region of interest. The network structure is a schematic diagram of Mask R-CNN (He 
et al., 2017). The sample label is in text format and contains the coordinate information on the object contour point and the class (species) information. The mask 
output by this network represents the segmentation result of the animal target, the box represents the bounding box because Mask R-CNN has been developed from 
Faster R-CNN (a network for bounding box-based object detection), and classes represent the species. Finally, the output information is summarized to obtain the 
result of instance segmentation. 

Fig. 12. Schematic diagram of the calculation of Intersection Over 
Union (IOU). 
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augmentation method that used a generator called conditional Gener-
ative Latent Optimization (GLO) to increase the positive training sam-
ples. The generator is a kind of Generative Adversarial Network (GAN, 
Goodfellow et al., 2014) that creates fake data and has a discriminator 
that tries to differentiate real from fake, with both improving until the 
fake looks real. In this way, it can produce more samples with animals. 
This method is currently being extensively applied in many remote 
sensing tasks (Wang et al., 2019b; Ahmad et al., 2021), yet its use in 
animal detection remains limited. Currently, with the development of 
the Artificial Intelligence Generated Content (AIGC), in addition to 
GANs, there are more generative models available like stable diffusion 
(Rombach et al., 2022). Using these methods to increase the number of 
positive samples is a worthwhile research direction. 

Imbalanced data can also be addressed using negative samples. A 
commonly used method is hard negative mining (Girshick et al., 2014). 
The hard negative samples refer to the objects that will likely confuse: 
for example, training not only on animals like elephants but also on big 
tree trunks, logs and rocks. In specific applications, Bowley et al. (2018) 
used feedback loops to optimize the selection of hard negative samples 
to replace manual selection. Peng et al. (2020) treated the hard negative 
samples as an independent class for training in kiang detection. These 
methods aim to minimize false positives in their studies and have yiel-
ded significant improvements. 

Augmenting positive or negative samples has markedly improved 
detection accuracy. However, it is less effective when the data is very 
imbalanced (Naudé and Joubert, 2019). Furthermore, such methods 
may overly focus on extreme samples, or affect the overall distribution 
of the data, leading to risks such as overfitting (overfitting is when a 
model learns the training data’s noise, which reduces its ability to 
generalize). Therefore, when using such methods, it is necessary to 
conduct a stricter assessment of the quality of the samples, especially in 
the evaluation of images generated by generative networks. 

(2) Adjusting the deep learning network. 
Refining the network is often an effective approach. Focal loss (Lin 

et al., 2020) was first introduced by Facebook AI Research (FAIR) as a 
method designed to address the issue of data imbalance and has since 
been widely adopted in various object detection tasks with abundant 
backgrounds and sparse foreground objects. In animal detection, Bowler 
et al. (2020) successfully used focal loss (Lin et al., 2020) in U-Net for 
albatross detection. Tversky loss (Salehi et al., 2017) is also an effective 
method for dealing with imbalanced data and has been successfully 
applied to wildebeest detection (Wu et al., 2023). The FSSCaps- 
DetCountNet developed by Sundarama and Loganathan (2020) also 
works well on challenging imbalance datasets. These studies showed 
that improvements in deep learning network can alleviate the data 
imbalance issue in animal detection. However, most of the improvement 
strategies come from outside the animal detection field. If there are more 
targeted methods for animal objects, the accuracy may be further 
improved. 

(3) Two-step detection. 
The first step in such methods is to find the small area containing the 

target animal(s) from a large area; this step is usually achieved by the 
method at image level. In the second step, in the block containing the 
animal objects, more accurate information on the location and quantity 
of the animal object is obtained within these sub-areas or tiles. Rahne-
moonfar et al. (2019) developed a two-stage network called Dis-
CountNet that uses theories from detection and from heat-map 
networks. The first stage (DiscNet) is used to select regions, and the 
second stage (CountNet) is used to count the objects inside the selected 
regions. They successfully applied this network to cattle detection. In 
whale detection, Guirado et al. (2019) also used the two-step approach. 
The first step, called “whale presence detection phase”, involved the 
Inception v3 network; the second step, the “whale counting phase”, 
involved the Faster R-CNN network. The main problem with this type of 
two-step approach is that errors may accumulate, and obvious de-
viations in the first step cannot be compensated by the second step. So, 

the first step must ensure detection is very accurate. 
(4) Curriculum learning. 
In curriculum learning (Bengio et al., 2009), the model can be 

trained adaptively on different parts of the dataset, usually on progres-
sively more complex datasets. In animal detection, the model can first be 
trained on a sub-dataset (a dataset with a balanced ratio of animal ob-
jects to background), and then be gradually expanded in imbalanced 
data to obtain more comprehensive information. This method was suc-
cessfully applied by Kellenberger et al. (2018) for mammal detection 
based on the SAVMAP dataset and by Chabot et al. (2022) for the 
detection of polar bears. While this method addresses the data imbal-
ance issue efficiently, designing a “good” curriculum itself is not easy 
and may require more knowledge and experimentation. When using 
such methods, it is necessary to evaluate the time cost required for 
designing and validating the curriculum. 

6.2. Small samples 

“Small sample” refers to the number of training samples being 
limited. The problem of small samples in animal detection is mainly 
reflected in two aspects. One is that for some small tasks, such as live-
stock detection in some farms, the observation data is relatively small 
and not enough samples can be obtained. This may also apply to large 
imbalanced datasets, where a rare animal species occurs in few images. 
Secondly, and conversely, in larger tasks the animal objects to be an-
notated are also very large, and annotation is time-consuming. There-
fore, such tasks require methods that make fewer demands on samples. 
To address this, current studies primarily involve methods based on data 
augmentation and learning strategies. 

(1) Data augmentation methods. 
Data augmentation methods can effectively expand the number of 

samples. Mirroring and rotation are commonly used methods to expand 
datasets. Han et al. (2019) expanded positive samples by flipping 
vertically, horizontally, and across both axes in livestock detection. 
Kellenberger et al. (2018) studied the impact of using rotation 
augmentation at different stages of training on detection accuracy and 
concluded that rotation is a useful augmentation method when com-
bined with smaller learning rates and applied at later training stages. In 
recent years, new data augmentation methods have considerably 
improved computer vision accuracy. Some of these algorithms have 
been incorporated into new network architectures and applied in animal 
object detection research (e.g., the mosaic algorithm included in 
YOLOv4, Bochkovskiy et al., 2020). However, these new data augmen-
tation methods have not been specifically evaluated in animal detection. 
The sample dataset can also be expanded through generating neural 
networks such as reported by Chou et al. (2018) for stingray detection. 
While these image enhancement methods offer some benefits, they 
might also add noise that affects training. Additionally, since the 
enhanced samples also come from the original data, the potential for 
accuracy improvement is limited. Therefore, it is necessary to consider 
the efficiency of the algorithm and use data augmentation algorithms in 
a limited way, such as by setting enhancement ratios and random var-
iables to control the frequency of their use. 

(2) Weakly supervised learning and self-supervised learning. 
These methods differ from fully supervised learning in that they do 

not require a large number of fully labelled samples. Weakly supervised 
learning uses incomplete, inaccurate, or inconsistent labelled data for 
training models. Self-supervised learning generates its own supervision 
from input data without explicit labels. Research has indicated that 
improvements in these methods can reduce the need for annotated data 
in animal detection. In weakly supervised learning, algorithms such as 
VQ-VAE or VAE-GRF can be utilized to train on datasets that do not 
include animals, without the need for additional annotations (Pham 
et al., 2023; Gangloff et al., 2023). Subsequently, animals can be iden-
tified through anomaly detection methods (to identify unusual or 
anomalous patterns in a dataset). Moreover, research has shown that 
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with the weakly supervised learning approach, using a small number of 
accurate samples can achieve the detection accuracy of almost complete 
samples (Kellenberger et al., 2019b). By combining Transfer Sampling 
(TS) and a new window cropping strategy, Kellenberger et al. (2019a) 
found 80 % of animals in a challenging datasets using only half of the 
labelled data. Self-supervised methods can also play a role in reducing 
sample requirements. Zheng (2021) studied the application of 
self-supervised pre-training in wild animal target detection and found 
that his method can effectively reduce the number of training samples 
needed. These weakly supervised and self-supervised methods signifi-
cantly reduce the cost of sample labelling, but currently, there is no 
method proposed to our knowledge that can completely eliminate the 
need for annotations. Notably, some of these methods also increase the 
complexity of the algorithms and the instability of the models. We have 
also observed that most research requiring lower supervision effort is 
conducted at the image or point level and can hardly achieve the per-
formance of fully supervised learning. Nonetheless, as the volume of 
remote sensing data increases, the demand for sample volume will also 
grow, the importance of these methods is expected to rise significantly. 

6.3. Small objects 

The small objects here refer not to the actual size of the animals but 
to the small number of pixels the animal occupies in the images. 
Different datasets for object detection have different definitions of small 
objects. In the COCO dataset (a widely used dataset in common com-
puter vision, Lin et al., 2014), objects smaller than 32 × 32 pixels are 
defined as small. The aerial image dataset DOTA assigns objects smaller 
than 50 pixels (side length) to small categories (Xia et al., 2018), but 
there are no animal objects in this dataset. In remote sensing- based 
animal detection there is no clear definition of small objects, even 
though most animal detection tasks encounter this issue. For example, in 
a study on wildebeest using Worldview data, each individual wildebeest 
occupies a square of about 3 × 3 pixels (Wu et al., 2023). Several studies 
have suggested methods to address the issue of small objects. 

(1) Methods based on modifying network structures. 
Some studies modified the network for detecting the small targets. 

Ma et al. (2022) used the HRNet, which is more suitable for small target 
detection, as the backbone of the Fast R-CNN network for large herbi-
vore detection. Razaak et al. (2019) used a multi-scale approach of low- 
level feature combinations with deconvolutional modules on the SSD 
network to improve small object detection. Another commonly used 
method involves improving the receptive field. In deep learning, the 
receptive field refers to the area of the input data that a neuron can “see” 
or respond to. Ulhaq et al. (2021) integrated dilated convolution to 
YOLO to increase the receptive field for animal detection in low- 
resolution airborne thermal imagery. Li et al., (2022b) added a 3 × 3 
maximum pooling layer to the SPP module to improve the receptive field 
in YOLOv5 and thereby to improve the detection accuracy of small and 
medium objects. Though effective, most of the methods employed are 
generic techniques from computer vision, with few customized for ani-
mal detection. In response to the characteristics of small targets, 
adjusting the convolutional structure or appropriately introducing the 
transformer model (Vaswani et al., 2017) to enhance the extraction and 
expression of features may improve the detection accuracy of small 
targets in dense areas. It should be noted that directly using models such 
as transformers may not be suitable for detection of small targets, and 
therefore these modules need to be adjusted to accommodate remote 
sensing image and animal detection. 

(2) Methods based on adjusting samples. 
Compared with methods based on modifying the network structure, 

the current method of adjusting samples is more specific to animal ob-
jects. Super-resolution reconstruction can be used to address the small 
object problem. Xue et al. (2022) used HAN resolution enhancement 
methods and improved the object sizes in samples on the AED and 
SAVMAP datasets. However, even under ideal conditions, the 

reconstructed high-resolution image may not fully achieve the quality of 
the original image. As animal objects in images are usually small, 
reconstruction errors easily lead to detection errors. Therefore, the role 
of super-resolution reconstruction methods needs to be confirmed in 
more types of remote sensing data. When the sample objects are too 
small, another effective method is to use point-based samples instead of 
bounding box-based samples, especially for animal objects of only a few 
pixels (Bowler et al., 2020; Goncalves et al., 2020; Wu et al., 2023). 

It is worth noting that in some small object detection, the scale dif-
ference of the object is not obvious. However, some mainstream de-
tectors such as YOLO v3-v5 and Faster R-CNN are multi-scale networks. 
In this case, the network structure and data characteristics are not 
completely matched. A few studies have addressed this issue. Torney 
et al. (2019) removed all but the final scale boxes in YOLOv3, as in their 
application for wildebeest detection the objects were only present at a 
single scale. Shao et al. (2020) chose a single scale network YOLOv2 and 
calculated the most suitable image input scale using the UAV flight 
altitude and the network parameters. These studies show that multi- 
scale networks are not always suitable for animal detection based on 
remote sensing images. Therefore, when applying existing deep learning 
models to animal detection, appropriately adding, deleting or adjusting 
the scale-related structures in the networks may bring about better 
detection results. 

6.4. Image annotation methods 

As demonstrated by Fig. 4, the two most used annotation methods 
are the bounding box based and point based methods. Both can be used 
to count and locate animals. There is a phenomenon that different re-
searchers use different annotation methods on the same public dataset. 
For instance, when using the Aerial Elephant Dataset (Naudé and Jou-
bert, 2019), Naudé and Joubert (2019) and Padubidri et al., (2021) 
chose point-based methods, while Delplanque et al. (2021) chose 
bounding box-based methods. Studies that discuss the issue of annota-
tion methods favor the point-based methods (Rahnemoonfar et al., 
2019; Padubidri et al., 2021; Sarwar et al., 2021). They suggest that 
bounding box based methods are less accurate when the animal distri-
bution is dense, and the process of sample preparation is time- 
consuming. However, there are two problems in the current related 
research. The first is that some articles are theoretical, not empirical 
(Rahnemoonfar et al., 2019; Padubidri et al., 2021). The second is that 
although some papers report empirical research, it is difficult to judge 
whether the difference in accuracy is due to the difference in annotation 
methods or to the difference in neural network structures. Therefore, 
this question cannot yet be definitively answered, and more rigorous 
experimental evaluation is needed to clarify the effect of annotation 
methods. However, some recent studies have shown that if animals 
occupy only a few pixels in an image, the point based method is the most 
appropriate (Wu et al., 2023). 

6.5. Image background 

Currently, several studies address the complexity of the environment 
in which animals live. In some tasks, such as sheep detection, the ground 
objects are relatively simple: white sheep and green grass. In this case, 
the animal objects are easily identifiable. However, there are also 
background problems in sheep detection. Sarwar et al. (2021) found that 
in sunny weather, the border of a sheep may blur with the background 
due to sunlight being reflected by the grass; the U-Net-MS model they 
proposed using outperforms other networks in this case. In the detection 
of other animals, Han et al. (2019) divided the livestock detection im-
ages acquired by UAV into three categories according to the detection 
difficulty. The most difficult category had different colors of livestock 
and more distractions like snow, houses, and landforms in the back-
ground. In the detection of sea turtles, the individuals were distributed 
across a range of seabed depths from shore to 5 m. Experiments showed 
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that detection decreased significantly with each additional meter in 
depth and was close to zero at a depth of 5 m (Dujon et al., 2021). These 
studies show the influence of image backgrounds on the detection ac-
curacy of deep learning. However, the background of animals in 
different studies varies widely, and no research has been done on a 
standardized index of background complexity. Therefore, the level of 
background complexity is difficult to directly compare across studies. 
For example, a background that is complex in some studies may be 
simple in others. Therefore, quantitative calculation of parameters 
related to environmental background (e.g., spatial heterogeneity) is 
needed to evaluate the application effects of deep learning methods 
more accurately in different backgrounds. 

6.6. Animal counting 

For most animal monitoring tasks, object counting is the ultimate 
goal. However, direct detection results may not meet the needs of 
counting. Therefore, further optimization is required to obtain more 
accurate counting results. 

(1) Improvements in network architecture. Most current detection 
networks focus more on identifying the location of objects rather than 
counting them. To enhance their effectiveness for counting tasks, it’s 
feasible to modify the network structure. For instance, Gonçalves et al. 
(2020) added a branch for counting to U-Net based on the WideResnet 
architecture. In addition, there is also research on making the network 
structure only output density map to specifically serve the task of 
counting (Padubidri et al., 2021; Meena et al., 2023). 

(2) Post-detection processing. This involves the steps taken after 
objects are detected to refine or interpret the results. For example, after 
obtaining the results at the bounding box level, Eikelboom et al. (2019) 
used a correction factor to improve the accuracy of sample-based aerial 
counting. 

(3) Accuracy assessment metrics. By establishing accuracy evalua-
tion metrics that are more closely related to counting, the counting 
performance can be better reflected. This approach can thus further 
encourage the refinement of related methods. Currently, the commonly 
used metrics for evaluating counting accuracy include Mean Absolute 
Error, Root Mean Square Error and Mean Absolute Percentage Error 
(MAE, RMSE, MAPE, Sarwar et al., 2021; Delplanque et al., 2023a). 

6.7. Accuracy assessment 

The accuracy of each study is included in the Appendix 1. It is evident 
that the accuracy evaluation metrics in current studies are highly 
inconsistent. At the bounding box level, some studies directly use 
common indicators in computer vision, such as mAP, but these in-
dicators are not always the most suitable for animal detection. Moreni 
et al. (2023) studied the difference between F1-score and mAP in animal 
detection and found that F1-score is more suitable than mAP because the 
animal detection task pays more attention to the location of the animals 
rather than the spatial range. At the point level, there are more detailed 
problems. Some studies use distance to determine whether objects have 
been detected correctly, but two questions arise. Should the pixel dis-
tance or the actual distance on the ground be used? How should the 
distance be determined? At present, different studies have different 
answers to these two questions (Naudé and Joubert, 2019; Kellenberger 
et al., 2021). For example, there are different methods for setting the 
threshold distance, as shown in Fig. 13. Even if the distance determi-
nation method is established, an issue remains: multiple predicted points 
near a ground truth point may satisfy the distance matching criteria 
(Fig. 13), and treating them all as true positives might significantly 
impact the accuracy. Different studies have opted for different methods 
and some studies do not even mention this problem that must be faced 
(Naudé and Joubert, 2019; Wu et al., 2023). There is therefore a need to 
develop a unified, scientific, and suitable accuracy assessment scheme 
for animal detection. For example, as illustrated in Fig. 13, the first 

method tends to classify a larger number of predicted points as True 
Positives (TP), resulting in an artificially inflated count. In contrast, the 
second method offers greater accuracy, which is also the standard 
approach recommended by the publishers of the COCO dataset (https 
://cocodataset.org/). Therefore, the formulation of a unified accuracy 
evaluation scheme should take into account these key details. 

6.8. Uncertainty estimation 

The ability to estimate uncertainty is essential for animal detection 
tasks and related ecological research. According to the collated papers, 
the sources of uncertainty include animals’ camouflage, low spatial 
resolution images, background interference, and observer annotation 
errors (Guirado et al., 2019; Bowler et al., 2020; Kellenberger et al., 
2021; Hinke et al., 2022; Lenzi et al., 2023). To quantify the uncertainty 
of model performance, Chalmers et al. (2021) employed 95 % confi-
dence interval (CI), which represents an estimated range that is likely to 
include the true parameter value. In addressing the impact of uncer-
tainty on the spatial accuracy of objects, Robinson et al., (2021) intro-
duced two algorithms: an optimistic matching algorithm for dense 
scenes and a conservative matching algorithm for precise, one-to-one 
pairings. However, other studies lack quantitative research on uncer-
tainty estimation. With increased emphasis on uncertainties in animal 
detection, there will be more methods employed to estimate them: for 
example, Bayesian methods (e.g. Bayesian Neural Networks, Monte 
Carlo dropout) and ensemble methods for uncertainty estimation, which 
have been used in remote sensing and deep learning (Cockx et al., 2014; 
Le et al., 2018; Loquercio et al., 2020; Abdar et al., 2021). 

7. Future trends 

7.1. Video-based detection 

Many of the animal detection tasks in the papers we reviewed 
recorded data in video form. Instead of using the original video footage, 
in most research still images are extracted and analyzed (Sarwar et al., 
2021). Information that helps improve detection accuracy, such as 
multi-frame timing information in the video, was not used in most 
studies. However, some recent studies have started focusing on directly 
processing video data and extracting information through techniques 
such as multi-frame processing and time series data processing. Zhu 

Fig. 13. Schematic diagram of point accuracy judgment. The upper illustration 
shows that there may be different distance threshold settings: less than the 
animal body length, equal to the animal body length, greater than the animal 
body length. The illustrations below show two TP (true positive) determination 
methods. Method 1 means that all prediction points that meet the distance 
range are considered TP, and method 2 means that within the acceptable dis-
tance range, only the prediction points closest to the real target are considered 
TP. FP indicates false positive. 
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et al. (2021) used a graph regularized flow attention network containing 
a temporal consistency module for video-based detection. Stojnić et al. 
(2021) used video stabilization and frame segmentation to detect small 
moving animals. In general, current optimization methods for video data 
in animal detection mainly come from the field of computer vision. 
Nevertheless, animals do not always exhibit rapid movement relative to 
the speed of movement of the background (e.g., video from an aircraft). 
Hence, in many instances within the video, the movement of animal 
targets is essentially imperceptible, unless shooting with an aircraft that 
can hover. This situation is quite different from video data in ordinary 
computer vision tasks. Consequently, it is crucial to explore whether 
current video processing approaches, such as optical flow and temporal 
fusion algorithms, are suitable for detecting animals in videos. Figuring 
out how to adjust these techniques for more efficient use remains a key 
issue in the realm of video-based animal detection. 

7.2. Very high resolution satellite imagery 

High resolution satellite imagery has traditionally been very costly, 
which is a major constraint on satellite-based animal detection. How-
ever, prices are now falling as more companies are offering < 1 m im-
aging capabilities from multiple constellations. In addition to Maxar’s 
launched and developing WorldView constellation, Airbus and Planet 
company are similarly advancing their Pléiades Neo and Pelican con-
stellations, respectively, all with spatial resolutions in the vicinity of 30 
cm. These developments suggest that due to increased competition the 
price of commercial high resolution satellite imagery will likely fall. 
Notably, the Albedo constellation, set to launch next year, aims for a 
groundbreaking spatial resolution of 10 cm, potentially matching or 
even surpassing current aerial imagery. These developments indicate 
that animal detection based on very high-resolution satellite imagery 
has increasing potential for animal detection. 

In addition, facilitating data sharing represents another avenue for 
advancing research utilizing satellite data. As we have enumerated in 
Table 1, there are shared datasets based on aircraft acquisitions. How-
ever, the sharing of very high-resolution commercial satellite data in the 
research community is currently not as prevalent, due to reasons like 
data policy restrictions. Addressing this issue may lead to meaningful 
progress in animal detection. 

7.3. Multiple species detection 

Although deep learning has significantly improved the accuracy of 
animal detection, most current studies concern single species detection. 
Some studies use datasets on more than one species but do not specif-
ically distinguish them: for example, lumping different species together 
into the general categories like “animals”, “mammals”, or “livestock” 
(Kellenberger et al., 2018; Han et al., 2019). However, multi-species 
detection faces practical needs. For instance, it is critically important 
for detection in multi-species wildlife counts in African savannahs, 
where accurate numbers are needed for management (Lamprey et al., 
2020a). With the improvement in image spatial resolution and the 
advancement of deep learning techniques, a few studies have begun to 
discuss multi-species detection (Delplanque et al., 2021) — a trend that 
is likely to continue. Most deep learning methods, such as YOLO, Faster 
R-CNN, etc., have efficient multi-category detection capabilities. But the 
main problem is that the animals are so small that there are little dif-
ferences in features between species in the images. Therefore, opti-
mizing the feature extraction part of the neural network, or using a 
stronger feature extractor, may significantly help solve this problem. 

7.4. New annotation methods 

New annotation methods can offer possibilities for improving accu-
racy and extracting more information in animal detection. The Oriented 
Bounding Box (OBB) adds a rotation angle relative to the vertical or 

horizontal direction based on the Horizontal Bounding Box (HBB). OBB 
can not only provide direction information of objects, but also effec-
tively prevent boxes from overlapping in situations where objects like 
animals are densely packed. Currently, OBB has been widely used in 
remote sensing (Xia et al., 2018), but it has not yet been studied for 
animal detection. Another new annotation method is called ’keypoint 
annotation’, which refers to labelling the key parts of objects, such as the 
head and limbs of animals. By using this method, the animal’s pose, 
movement status and other information can be obtained. It should be 
noted that the keypoint here is not the keypoint features used in algo-
rithms such as Scale-Invariant Feature Transform (SIFT) for image 
matching in some studies (Rahnemoonfar et al., 2019). Among the 
collected papers, some mentioned keypoint annotations without in- 
depth research, yet some included it in their future research plans 
(Hayes et al., 2021; Doll and Loos, 2023). 

7.5. Specialized network structures 

The mainstream applications in animal detection are still applied 
directly or simply adjusted to the off-the-shelf networks in computer 
vision. As there are already numerous network structures in the fields of 
object detection that can be used for animal detection, applying them 
directly can result in significant time savings and prompt updates to the 
latest network structures. However, some typical neural networks are 
not ideal for animal detection. For example, as mentioned in 6.3, the 
popular multi-scale structures may not be necessary in some animal 
detections. Some studies have begun to explore deep learning methods 
specifically for animal detection. Xue et al. (2022) proposed using an 
altitude-augmented module which can be usefully applied to aerial 
datasets with different altitudes. Additionally, although networks like U- 
Net were originally designed for semantic segmentation, some studies 
now use it to generate density maps to identify animal locations (Naudé 
and Joubert, 2019), which can also be viewed as a specialized 
improvement. Similar improvements can not only improve the accuracy 
of animal detection, but will also avoid deploying unnecessary 
computing resources. However, these studies are still few and do not 
reflect the characteristics of animal detection. We believe that, starting 
from the characteristics of animal targets (such as animal morphological 
characteristics and their aggregation, etc.) and the environment in 
which they live, rethinking the way scale issues are handled in the 
network are potential ideas that can make the models closer to animal 
detection and enhance their performance. It should be noted that overly 
detailed networks may not perform well in generalization, making them 
only suitable for very specific situations and requiring careful consid-
eration in practical research. 

7.6. Large foundation models 

A foundation model is any model that is trained on broad data that 
can be adapted (e.g., fine-tuned) to a wide range of downstream tasks 
(Bommasani et al., 2022). In recent years, large foundation models like 
GPT-4 (OpenAI, 2023) have shown good application results. In image 
processing, there has also been significant advancement. Segment 
Anything Model (SAM) is a large model that can be applied to many 
scenarios such as interactive segmentation, boundary detection, se-
mantic segmentation, instance segmentation, panoramic segmentation, 
etc. (the ViT-H version in SAM has 636 million parameters, Kirillov 
et al., 2023). Studies have shown that SAM can play a role in remote 
sensing tasks like image segmentation (Chen et al., 2023b). There are 
also models specially proposed for remote sensing data. Sun et al. (2023) 
developed a foundation model called RingMo using a large dataset by 
collecting two million remote sensing images and showed high accuracy 
in object detection tasks. However, this study did not explicitly include 
data related to animal detection. The aforementioned recent research 
underscores the potential for significant progress in large-scale models 
for animal monitoring. Nevertheless, large models typically require 
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extensive datasets (even when employing unsupervised methods) along 
with adequate hardware resources. Addressing these challenges is 
crucial for the development of such models, and collaborative sharing of 
data and computational resources could be a pivotal factor in their 
advancement. 

8. Conclusion 

This article presents a review of the application of deep learning for 
animal object detection in remote sensing. We first introduced different 
remote sensing platforms for animal detection. Then we compiled and 
analyzed the deep learning methods used in existing research and 
categorized them into five levels based on criteria such as annotation 
methods. Our analysis revealed that the most used neural network 
structures are YOLO, Faster R-CNN, U-Net, and ResNet, and that 
research at the bounding box level and point level predominates, but 
that with advances in deep learning technology and the improvement of 
image spatial resolution, future developments will probably be at the 
instance segmentation level and specific information level. After sum-
marizing the deep learning methods, we identified the primary chal-
lenges in animal detection: data imbalance, small samples, small objects, 
image annotation methods, image background, animal counting, accu-
racy assessment and uncertainty estimation. We summarized the 
methods used in existing research to address these challenges and found 
that potential solutions for these challenges include handling positive or 
negative samples, adjusting network structures or annotation methods, 
and introducing new approaches like weakly supervised and self- 
supervised learning. At the same time, we also pointed out the short-
comings of the above solutions. Finally, we explored the trends in this 
field: considering video-based detection, very high-resolution satellite 
imagery, multiple species detection, new annotation methods, special-
ized network structures, and large foundation models. 
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