162 research outputs found
Statistics of Atmospheric Correlations
For a large class of quantum systems the statistical properties of their
spectrum show remarkable agreement with random matrix predictions. Recent
advances show that the scope of random matrix theory is much wider. In this
work, we show that the random matrix approach can be beneficially applied to a
completely different classical domain, namely, to the empirical correlation
matrices obtained from the analysis of the basic atmospheric parameters that
characterise the state of atmosphere. We show that the spectrum of atmospheric
correlation matrices satisfy the random matrix prescription. In particular, the
eigenmodes of the atmospheric empirical correlation matrices that have physical
significance are marked by deviations from the eigenvector distribution.Comment: 8 pages, 9 figs, revtex; To appear in Phys. Rev.
The Muonium Atom as a Probe of Physics beyond the Standard Model
The observed interactions between particles are not fully explained in the
successful theoretical description of the standard model to date. Due to the
close confinement of the bound state muonium () can be used as
an ideal probe of quantum electrodynamics and weak interaction and also for a
search for additional interactions between leptons. Of special interest is the
lepton number violating process of sponteanous conversion of muonium to
antimuonium.Comment: 15 pages,6 figure
Asteroseismology of red giants & galactic archaeology
Red-giant stars are low- to intermediate-mass (~M)
stars that have exhausted hydrogen in the core. These extended, cool and hence
red stars are key targets for stellar evolution studies as well as galactic
studies for several reasons: a) many stars go through a red-giant phase; b) red
giants are intrinsically bright; c) large stellar internal structure changes as
well as changes in surface chemical abundances take place over relatively short
time; d) red-giant stars exhibit global intrinsic oscillations. Due to their
large number and intrinsic brightness it is possible to observe many of these
stars up to large distances. Furthermore, the global intrinsic oscillations
provide a means to discern red-giant stars in the pre-helium core burning from
the ones in the helium core burning phase and provide an estimate of stellar
ages, a key ingredient for galactic studies. In this lecture I will first
discuss some physical phenomena that play a role in red-giant stars and several
phases of red-giant evolution. Then, I will provide some details about
asteroseismology -- the study of the internal structure of stars through their
intrinsic oscillations -- of red-giant stars. I will conclude by discussing
galactic archaeology -- the study of the formation and evolution of the Milky
Way by reconstructing its past from its current constituents -- and the role
red-giant stars can play in that.Comment: Lecture presented at the IVth Azores International Advanced School in
Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars
and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta,
Azores Islands, Portugal in July 201
A comparative analysis of fibroblast growth factor receptor signalling during Xenopus development
Microfluidic analysis techniques for safety assessment of pharmaceutical nano- and microsystems
This chapter reviews the evolution of microfabrication methods and materials, applicable to manufacturing of micro total analysis systems (or lab‐on‐a‐chip), from a general perspective. It discusses the possibilities and limitations associated with microfluidic cell culturing, or so called organ‐on‐a‐chip technology, together with selected examples of their exploitation to characterization of pharmaceutical nano‐ and microsystems. Materials selection plays a pivotal role in terms of ensuring the cell adhesion and viability as well as defining the prevailing culture conditions inside the microfluidic channels. The chapter focuses on the hepatic safety assessment of nanoparticles and gives an overview of the development of microfluidic immobilized enzyme reactors that could facilitate examination of the hepatic effects of nanomedicines under physiologically relevant conditions. It also provides an overview of the future prospects regarding system‐level integration possibilities facilitated by microfabrication of miniaturized separation and sample preparation systems as integral parts of microfluidic in vitro models.Non peer reviewe
The Immune Landscape of Cancer
We performed an extensive immunogenomic analysis of more than 10,000 tumors comprising 33 diverse cancer types by utilizing data compiled by TCGA. Across cancer types, we identified six immune subtypes—wound healing, IFN-γ dominant, inflammatory, lymphocyte depleted, immunologically quiet, and TGF-β dominant—characterized by differences in macrophage or lymphocyte signatures, Th1:Th2 cell ratio, extent of intratumoral heterogeneity, aneuploidy, extent of neoantigen load, overall cell proliferation, expression of immunomodulatory genes, and prognosis. Specific driver mutations correlated with lower (CTNNB1, NRAS, or IDH1) or higher (BRAF, TP53, or CASP8) leukocyte levels across all cancers. Multiple control modalities of the intracellular and extracellular networks (transcription, microRNAs, copy number, and epigenetic processes) were involved in tumor-immune cell interactions, both across and within immune subtypes. Our immunogenomics pipeline to characterize these heterogeneous tumors and the resulting data are intended to serve as a resource for future targeted studies to further advance the field. Thorsson et al. present immunogenomics analyses of more than 10,000 tumors, identifying six immune subtypes that encompass multiple cancer types and are hypothesized to define immune response patterns impacting prognosis. This work provides a resource for understanding tumor-immune interactions, with implications for identifying ways to advance research on immunotherapy
Evaluación de las subpoblaciones de linfocitos T en pacientes tuberculosos empleand la modulación con teofilina
Avaliação genética de touros usando produção em lactações completas ou parciais projetadas: 3. Confiabilidade e ganhos genéticos
Forward Neutral Pion Production in p + p and d + Au Collisions at √ sNN = 200 GeV
Measurements of the production of forward π0 mesons from p+p and d+Au collisions at √sNN=200 GeV are reported. The p+p yield generally agrees with next-to-leading order perturbative QCD calculations. The d+Au yield per binary collision is suppressed as η increases, decreasing to ∼30% of the p+p yield at ⟨η⟩=4.00, well below shadowing expectations. Exploratory measurements of azimuthal correlations of the forward π0 with charged hadrons at η≈0 show a recoil peak in p+p that is suppressed in d+Au at low pion energy. These observations are qualitatively consistent with a saturation picture of the low-x gluon structure of heavy nuclei
Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at √s=7 TeV
Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at root s = 7 TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity dN(ch)/d eta vertical bar(vertical bar eta vertical bar<0.5) = 5.78 +/- 0.01(stat) +/- 0.23(stat) for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from root s = 0.9 to 7 TeV is [66.1 +/- 1.0(stat) +/- 4.2(syst)]%. The mean transverse momentum is measured to be 0.545 +/- 0.005(stat) +/- 0.015(syst) GeV/c. The results are compared with similar measurements at lower energies
- …
