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Abstract

Microfluidics is increasingly applied to chemical and biological research, including drug discovery

and development This chapter gives an overview of the commonly used microfabrication methods

and materials as well as microfluidic (bio)analytical techniques available for the in vitro safety

assessment of pharmaceutical nano- and microsystems. A general overview will be given to the

evolution of microfabrication methods and materials, which have facilitated the progressive

development of microfluidic cell culture platforms (so called organ-on-a-chips), immobilized enzyme

microreactors, and integrated separation systems (for chemical analysis). Of these techniques, the

organ-on-a-chips are so far the most applied microfluidic concept in safety evaluation of

pharmaceutical nano- and microsystems, whereas the other two represent techniques that could

benefit the field in the future by enabling in-depth mechanism-based studies with respect to, e.g.,

improved hepatic safety.
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3.1 Microfluidic bioanalytical platforms

Since 1990’s, microfluidics has been increasingly applied to chemical and biological research,

including drug discovery and development [1,2]. Microfluidics is by definition a field of study that

encompasses the physics of fluid behavior in micrometer structures and the engineering aspects of

design and fabrication of miniaturized devices for controlling the flow of small amounts of fluids

(typically in the range of pico-nanoliters). Via microfabrication, all critical operations can be

combined on a single microfluidic chip, including but not limited to fluid manipulation and mixing,

sample purification and enrichment, (bio)chemical reactions, cell manipulation and culturing, as well

as separation and detection of the chemical and biological sample components [3–5]. This field of

research is often referred to as Micro Total Analysis Systems (mTAS) or Lab(oratory)-on-a-Chip.

From the perspective of (bio)chemical analysis, the high degree of integration results in negligible

dead volumes (no time lag) between the different units, which substantially decreases the total

analysis time per sample. The analytical throughput may be further increased through

microfabrication of multiple integrated assays in parallel. From the perspective of cell culturing,

introduction of microfluidic flow enables, e.g., efficient supply of nutrients to and removal of

metabolic waste from the cell cultures. In addition, microfluidic actuation enables creation of spatial

chemical gradients and their precise control over time, which benefits especially mechanism-based

studies on both organ and (single) cell levels. Overall, miniaturization also reduces the consumption

of expensive and/or toxic chemicals, thus saving resources and producing less chemical waste.

Besides (bio)analytical techniques, microfluidics has been extensively applied to custom

manufacturing, i.e., synthesis and functionalization, of pharmaceutical nano- and microsystems, but

these are categorically out of the scope of this book. For an overview of the state-of-the-art in this

field, the reader is advised to familiarize with other recent reviews focusing on microfluidic

techniques in drug delivery [6,7]. Here, the aim is to provide the reader with an idea of the rationale

design of microfluidic (bio)analytical devices, paying particular attention to the possibilities and

limitations associated with the applicable microfabrication methods and materials.

Section 3.1.1 Microfabrication methods and materials

In this section, the evolution of microfabrication methods and materials, applicable to manufacturing

of micro total analysis systems (or lab-on-a-chips), is reviewed from the general perspective. The

materials properties critical to each reviewed application field are further emphasized in later sections.
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The progressive development of silicon microfabrication processes in the early 1980’s enabled the

explosive growth of semiconductor technology so that electrical components (transistors, diodes,

integrated circuits, solar cells etc.) could be fabricated at practically zero cost and mobile electronic

devices became available to average users. In the 1990’s, the same microfabrication processes were

harnessed for manufacturing of miniaturized chemical analysis devices that incorporated integrated

micrometer-scale channels for sample loading and electrophoretic separation on a single chip [8,9].

Although the first silicon-based gas chromatographic separation chip was reported already at the end

of 1970’s [10], the greater breakthrough emerged via the introduction of glass micromachining

techniques to fabricate microfluidic electrophoresis devices [8,9]. This was because the concept of

microchip electrophoresis, on an electrically insulating material such as glass, facilitates substantial

decrease in the duration of analysis down to ca. 1 min per sample (for more details, see Section 3.4).

However, microfabrication of glass by wet or plasma etching requires specialty cleanroom equipment

and relatively harsh chemicals, such as hydrogen fluoride [11], which significantly limits the use of

glass-based microfluidics in regular research laboratories. Therefore, the introduction of

poly(dimethyl siloxane) (PDMS) soft lithography in 1998 [12,13] was the critical next step to wider

exploitation of microfluidics in chemical and biological research by enabling rapid replication of

microfabricated structures in normal laboratory conditions.

In PDMS soft lithography, a master mold is typically prepared (in cleanroom conditions) by

transferring the microstructures from a photomask to a photoresist (such as the negative tone epoxy

polymer SU-8 [14,15]), spincoated on a silicon wafer, by UV lithography (Figure 1). The photomask

is typically based on a computer-aided drawing (CAD) translated into a chromium-coated glass plate,

although nowadays the quality and feature resolution of printed plastic masks (less expensive) are

often sufficient for most microfluidic applications. The silicon wafer (typically 4-inch in diameter)

supporting the photoresist pattern is the standard borrowed from semiconductor industry, as is the

UV lithographic patterning of photoresists to reproduce the photomask design onto the silicon wafer.

Several commercial vendors exist for both types of photomasks and silicon (and glass) wafers as well

as for both negative and positive tone photoresists. In the case of negative tone photoresists, the areas

exposed to UV will crosslink, whereas the masked areas do not and can be dissolved using appropriate

developer solution, in analogy to photography (Figure 1). In a subsequent step, the microstructures

of the master mold will be replicated to PDMS by pouring the elastomer solution onto the master,

crosslinking the PDMS by heating, and detaching the PDMS replica from the master mold [12,13],

as illustrated in Figure 1. Although in this protocol the master fabrication typically still relies on

cleanroom processes, the subsequent PDMS crosslinking can be performed in regular laboratory

conditions and the master typically tolerates reproduction of multiple PDMS replicas, which
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significantly reduces the cost and complexity of microfabrication. Equally important is also the fact

that PDMS is self-adhesive to itself and to most other materials, which enables straightforward sealing

of the PDMS microstructures [12,13]. The PDMS-PDMS bonding is by default reversible in nature,

but permanent bonding of two PDMS layers for applications requiring higher pressures (>1 bar) may

be achieved by treating the surfaces with, e.g., oxygen plasma prior to their bonding [16]. For

comparison, sealing of glass or silicon based microstructures with another glass/silicon wafer is much

more complicated and typically requires high temperatures or specialty equipment [11].

Figure 1. Schematic representation of the typical PDMS soft lithography process. Republished with

permission of the Royal Society of Chemistry, from Huikko et al.2003 [17]; permission conveyed

through Copyright Clearance Center, Inc.

Besides manufacturing of PDMS-based microfluidic devices, the PDMS replica itself can also be

used as a stamp or a mold for further replication steps as illustrated in Figure 2. In principal, the

PDMS microstructures can be replicated to any heat- or UV-curable polymer by casting the monomer

solution onto the PDMS mold, crosslinking the cast polymer when in contact with PDMS, and

detaching the new polymer replica from the PDMS mold. The lifetime of the PDMS mold is typically

less than that of the cleanroom master molds, because PDMS tends to absorb the monomers of the

cast solution, but it easily lasts for at least a handful of repeated replication cycles [18]. In comparison

to direct replication of heat- or UV-curable polymers (other than PDMS) with the help of cleanroom

masters (e.g., SU-8), the elasticity of PDMS plays a critical role in facilitating straightforward
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detachment of the mold and the replica from each other (after curing) without damaging the

reproduced microstructures. If both the mold and the replica are mechanically rigid materials, the

detachment is much more complicated. Thereby, the introduction of PDMS soft lithography at the

end of 1990’s significantly increased the freedom in selection of the microfabrication material on a

best-fit-for-the-purpose basis so that the materials (properties) could be chosen from the end

application viewpoint. However, not all polymers can be sealed in an equally straightforward manner

as PDMS devices, since most other polymers do not feature self-adhesive properties. An exception

are, e.g., UV-curable off-stoichiometric thiol-ene (OSTE) polymers, which - depending the bulk

monomer composition and the applied crosslinking conditions - may be sealed by one another

following a fairly simple lamination protocol [19,20]. In addition to straightforward sealing, the

OSTE chemistry provides the possibility to adjust both the bulk properties and the surface chemistry

(type and number of functional groups available for further chemical conjugation reactions) on the

basis of the end-application needs [18,20–22]. These possibilities are briefly reviewed in the context

of relevant applications in the next sections.

Figure 2. Schematic presentation of the fabrication steps of micropillar arrays reproduced in UV-

curable, off-stoichiometric thiol-ene (TE) polymers: (a) SU-8 master fabrication in cleanroom, (b)

PDMS soft lithography, (c) TE replica-molding: pouring TE monomer solution onto the PDMS mold,

removal of trapped air in vacuum and crosslinking by UV, and (d) sealing of the cured micropillar

layer by another (flat) TE layer by lamination and further UV curing of the bonded interface. (e)
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Scanning electron microscopy (SEM) images of the micropillar arrays. Republished with permission

of Springer Nature, from Tähkä et al. 2019 [18]; under the terms of the Creative Commons Attribution

4.0 International License.

To date, a wealth of polymers, primarily UV-curable or thermoplastic, have been introduced for

prototyping of microfluidic devices by replication (e.g., soft lithography, embossing) or direct

microfabrication methods (e.g., lithography, micromachining) [23]. Thermoplastic materials, on one

hand, can be cost-efficiently processed by a variety of techniques, including injection molding,

thermoforming, hot embossing, laser machining, and precision mechanical machining [24]. On the

other hand, direct UV lithography of negative tone photoresists, such as SU-8 [14,15] and organically

modified ceramics [25,26], typically provides superior feature resolution compared with other

microfabrication techniques. In recent years, the progressive development and the low-cost of 3D

printing has also significantly increased the use of fused deposition modeling and stereolithography

for additive manufacturing of both master molds and micro-millifluidic devices [27,28]. All of these

techniques together currently provide versatile possibilities for rapid prototyping of microfluidic

devices in both cleanroom and regular laboratory settings. The selection of the proper material and

method can in most cases be made from the perspective of the critical materials properties required

in the end application. However, a technology barrier still exists in terms of translating the prototypes

into commercially viable microfluidic products, since not all materials are feasible for mass-

manufacturing. Commercial vendors primarily exist for glass-based microfluidic devices as well as

for thermoplastics. Lately, roll-to-roll manufacturing has also been introduced to mass production of

PDMS [29] and thiol-ene [30] microdevices, which may pave the way for their commercial use as

well.

Section 3.2 Microfluidic cell cultures

In this section, the possibilities and limitations associated with microfluidic cell culturing, or so called

organ-on-a-chip technology, are briefly reviewed together with selected examples of their

exploitation to characterization of pharmaceutical nano- and microsystems. Since comprehensive

reviews of the previous literature in this field have been published elsewhere [31], the emphasis in

this chapter will be on the design of organ-on-a-chips from the perspective of the microfabrication

methods and materials (selection).
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Section 3.2.1 Selection of the microfabrication material by design

Compared with conventional static cell cultures, microfluidic cell culturing benefits from efficient

nutrient supply and improved elimination of metabolic waste thanks to the through-flow applied over

the cells seeded onto the microchannel bottom (Figure 3). However, differences in proliferation,

glucose metabolism, signaling pathway activation and protein expression levels between cells

cultured in traditional macroscale cultures and in microfluidic cultures have also been reported [32].

Much of the original work on organ-on-a-chip development has centered around fully PDMS based

or PDMS-glass hybrid devices, not only because of the straightforward prototyping, but also because

of the inherent bio- and cell compatibility and superior optical transparency (down at the UV range)

of PDMS [33]. Moreover, PDMS also has high oxygen permeability [34], which is critical to ensuring

sufficient oxygen transfer to the cell culture through the cover (PDMS) layer, especially during the

static (no-flow) cell seeding step. On their own, neither PDMS nor glass readily support cell adhesion

(at the bottom of the microchannel), and therefore the microchannel is typically coated with proteins

promoting cell adhesion prior to cell seeding [33]. However, readily cell-adherent and biocompatible

microfabrication materials also exist, such as the commercially available organically modified

ceramics [35–37]. Besides materials properties, the spatial confinement and shear force impact cell

adhesion and proliferation (Figure 3). On one hand, care should be taken to adjust the microfluidic

flow rate so as to ensure that the shear stress does not exceed the threshold for cell adhesion [38]. On

the other hand, manipulation of the shear force is a prerequisite to ensure physiologically relevant

conditions in, e.g., vascular cell cultures [39]. The cell-compatibility of the chosen microfabrication

material may also be affected by chemicals (e.g., uncrosslinked monomers) leaching from the bulk to

the cell culture medium, which limits especially the use of many polymers (other than PDMS) in

organ-on-a-chip applications. For example, the leaching monomers of methacrylate-based cell

culturing platforms have been reported to induce apoptosis of human osteoblasts [40]. Similar

material-induced cell death has also been associated with certain 3D printing [41] as well as thiol-

rich OSTE polymers [42]. To eliminate the impacts of leaching chemicals, particular attention thus

needs to be paid on post-processing of the cell culture platforms prior to cell seeding. Typically

relatively simple heat treatment, possibly combined with a pre-incubation in the culturing medium,

has sufficed to eliminate the leaching monomers [40,43].
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Figure 3. (a) Illustration of the difference in phenotype of primary hepatocytes in small vs. large

volumes, suggested to arise from the accumulation of endogenous factors in small volumes (h is the

height of cell culture chamber). (b) A PDMS-based microdevice perfused with food dye. (c) Bright

field images of primary hepatocytes after seven days in 12-well plate (h=2 mm) or inside the

microfluidic device (h=75 μm). Scale bar is 25 μm. Republished with permission of Springer Nature,

from Haque et al. 2016 [44]; under the terms of the Creative Commons Attribution 4.0 International

License.

The optical properties (clarity and transparency) of the chosen microfabrication materials mainly

determine the suitability of the different cell stains for visualization of cell viability and/or apoptotic

biomarkers. Apart from PDMS, many polymers exhibit fairly high autofluorescence in the near UV

range and below [45], although for instance organically modified ceramics and OSTE polymers too

are optically clear and transparent down to ca. 300 nm [46,47] almost same as glass. To a certain

degree, the optical clarity also depends on the chosen microfabrication method. For example, 3D

printing by default results in a rough and thus somewhat opaque surface compared with

lithographically defined microstructures or the replicated patterns thereof [48]. Because of these

reasons, hybrid devices made from PDMS (top layer) and glass (bottom layer) are probably the most

used prototype design for organ-on-a-chips, as this configuration enables high quality optical
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monitoring of the on-chip cell culture by both inverted and upright microscopy (see, e.g., Figure 3).

Besides optical detection, electrical impedance spectroscopy can be applied as a label free, non-

invasive method for monitoring  the growth-rate (or disruption) of the cell monolayers on microfluidic

devices [49]. This approach however requires integration of conductive (metal) electrodes at the

bottom of the microchannel, which sets certain limitations to the material selection. Namely, the

electrode material has to be cell-compatible (such as gold or indium tin oxide) [50,51] and the

substrate material (microchannel bottom) has to support metal adhesion. Metallization processes

(sputtering or evaporation) typically rely on cleanroom equipment, but are fairly well established for

e.g., glass. Instead, metallization of polymers typically suffers from poor adhesion (especially on

PDMS [52]) and necessitates development of custom, material-specific processes (see, e.g.,

metallization of organically modified ceramics [53]). At best, however, combination of optical and

impedance detection allows for long-term culturing with continuous parallel and mutually

independent monitoring of the cell growth rates by means of impedance measurements and of specific

other cellular events by means of optical or fluorescence microscopy [49].

Besides facilitating cell adhesion and proliferation, and their uninterrupted monitoring, careful

selection of the microfabrication materials enables the design of fairly complex organ-on-a-chip

platforms. For example, it is well-known that the atmospheric oxygen levels (21 %) are suboptimal

to cell culturing from the perspective of in vitro-in vivo correlation [54]: in the physiological

conditions (oxygen levels in the body range from 1 to 12 %), or under hypoxia, the cells grow faster,

live longer, and show lower stress. In addition to conventional approaches (adding nitrogen gas to the

cell incubator), hypoxic conditions can also be reproduced on chip, for example by adding oxygen

scavenging chemicals to the liquid feed [55]. In this case, however, the microfluidic oxygen sink

often has to be physically separated from the cell culture compartment, so as to avoid the toxic oxygen

scavengers from attacking the cells. Figure 4 describes a schematic overview of a chip design, where

a PDMS membrane was exploited to prevent the chemical diffusion into the cell culture (on top of

the membrane), while allowing for oxygen transfer from the cell culture to the underlying chamber

where oxygen scavenging was chemically induced. In this case a vertical oxygen gradient was created

across the atmospheric cell culture (Figure 4), but to achieve uniform hypoxia, attention has to be

paid on the use of gas impermeable materials only, so as to prevent oxygen transfer to the cell culture

through the microchannel cover layer. The oxygen permeability of most other microfabrication

materials is insignificantly small compared with PDMS [56] and does not thereby set limitations to

the material selection from the design perspective. Besides chemical additives, it has been reported

that certain thiol-rich OSTE polymers feature inherent oxygen scavenging properties, which can be

controlled by simply changing the surface-to-volume ratio of the microfluidic channel or the
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temperature and the curing time during the fabrication process [43]. Although the inherent oxygen

scavenging capability of thiol-rich OSTE polymers is long-lasting, and thus feasible for long-term

cell culturing under hypoxic conditions, it is associated with excess of uncrosslinked thiol monomers

and thus disappears during the heat treatment required to avoid the material-induced cell death of

OSTE polymers.

Figure 4. A schematic presentation of the microfluidic organ-on-a-chip used for creating hypoxic

conditions on chip, while simultaneously isolating the toxic oxygen scavenging chemicals from the

cell culture compartment with the help of PDMS membrane. Republished with permission of

Elsevier, from Barmaki et al.2018 [55]; permission conveyed through Copyright Clearance Center,

Inc.

Section 3.2.2 Additional design considerations

Materials selection plays a pivotal role in terms of ensuring the cell adhesion and viability as well as

defining the prevailing culture conditions (especially oxygen level) inside the microfluidic channels.

Besides the surface chemistry and wetting properties, inducing cell alignment via engineered
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topographical cues may elicit a cellular phenotype similar to aligned tissues in vivo [57]. The

topography of the microchannel surface may be easily manipulated by microfabrication means. A

common approach is to make use of microfabricated (on axis) grooves, which resemble the groove-

like topographical features of the extra-cellular matrix. The impacts of topographical cues, in

combination with and in the absence of microfluidic flow, have been particularly studied with a view

maturation of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) [58,59], although

they are also beneficial for cell types of skeletal and neuronal lineages [60,61]. The microgrooves

alone have been shown to bring about cellular alignment (p < 0.0001) and more organized sarcomeres

(Figure 5), and thus improved Ca2+ cycling not associated with modifications in gene expression of

iPSC-CMs [58]. The synergistic impact of topographical cues and sustained release of biochemical

growth factors has been reported to improve even differentiation of human mesenchymal stem cells

toward myogenic lineage [61].

Figure 5. Left: Representative immunofluorescence of iPSC-CM cultured on unstructured PDMS

(A) and microgrooved PDMS (B), Red – sarcomeric α-actin, Blue – DAPI, scale bar 20 μm.

Quantification of cell alignment iPSC-CM on structured and unstructured constructs (C). Right:

Schematic demonstrating the fabrication of microgrooved tissue culture substrates (not drawn to

scale). Republished with permission of Elsevier, from Rao et al. 2013 [58]; under the terms of the

Creative Commons Attribution 4.0 International License.

Along with cell monolayers, microfluidic three-dimensional (3D) cell culturing techniques have

received increased recognition by both researchers and administrators [62]. In 3D, the cells are known
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to retain tissue-specific architecture better than in monolayers [63,64], because the flat and rigid

surface requires cytoskeleton to establish contact between neighboring cells and exert artificial

polarity [65], which prevents the formation of adequate extracellular matrix (ECM) and the cell-cell

and cell-matrix interactions [66]. Moreover, the lack of certain cell-specific functionalities in

monolayer cultures (e.g., sub-physiological expression of metabolizing enzymes or cell polarization)

favor the use of 3D cell models in modern drug discovery and development [67]. Overall, culturing

cells in 3D often improves the accuracy of in vitro-in vivo correlation in cell-based safety and efficacy

assessment. For example, the 3D tumor models are often more resistant to drug therapies compared

with monolayer cultures [68]. The microfluidic 3D cell cultures can be established by a variety of

techniques, including both scaffold-based (e.g., encapsulation of cells in 3D hydrogels) and scaffold-

free strategies, such as forced floating in hanging drops or in cell-repellant microwells that result in

the formation of spherical cell aggregates [62,69]. However, the increasing complexity does not

automatically mean better results. For example, the diffusion-limited penetration of antibodies and

other cell stains are prevailing challenges commonly associated with 3D cell cultures, especially those

exploiting scaffold-based strategies. Scaffold-based strategies also raise issues of biocompatibility

and cell-material biorecognition, whereas biodegradable scaffolds substitute a large amount of ECM

and result in 3D cultures composed of less densely packed cells [70]. In contrast, scaffold-free

approaches initiate interactions between cells which aids the formation of self-generated ECM.

Compared with conventional scaffold-free methods, often featuring limited reproducibility and size

uniformity, microfluidic 3D cell culturing devices hold the promise of high-throughput in both

generation and handling of multitude of uniform-sized spheroids on a single platform [69].

Fabrication of microwells, and particularly their integration with microfluidic channels, is generally

more straightforward than that of hanging drop devices. However, achieving cell-repellant surfaces

to induce forced floating in microwells, as illustrated in Figure 6, typically requires additional post-

processing steps. The common approaches taken to reduce cell adhesion include, e.g., pegylation [71]

and nanostructuring of hydrophobized surfaces [72,73]. Moreover, most microfabrication methods

and materials yield vertical or near-vertical walls, i.e., cylindrical microwells, which are sub-optimal

to controlling the spheroid growth. Although substantial effort has gone on development of methods

feasible for reproducing rounded microstructures (cross-section profiles), their fabrication is

generally challenging and in most cases relies on nonstandard techniques, such as overexposure of

organically modified ceramics [26] or replica-molding of microdroplet-shaped features obtained via

photoresist reflow [74]. Many of the other available techniques, such as isotropic etching [75], laser

ablation [76], and milling [77], are limited in terms of achievable aspect ratio (height/width), which

may set limitations to total culturing time due to spheroids outgrowing the microwells. Nevertheless,

U-shaped microwells are preferred for on-chip spheroid culturing, because in cylindrical microwells,
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the cells are initially located far apart from each other, which may impair the cell-cell interactions

and subsequently reduce the reproducibility and size uniformity from well to well. Increasing the

initial cell count or decreasing the well dimensions often improve reproducibility, but simultaneously

limit the total culturing time as the spheroids outgrow the wells sooner. In contrast, U-shaped wells

enable single-pointed gravitational force, which brings the cells closer to each other even in relatively

large wells resulting in superior reproducibility [78].

Figure 6. Spheroid formation process in a microwell-based organ-on-a-chip: (A) Introduction of a

cell suspension to the chip inlet. The cell suspension fills all the microchannels and microwells rapidly

due to the capillary effect; (B) Cells start depositing on the bottom of the microchannels and

microwells; (C) Pure culture medium flows through the chip to rinse the excess cells without

disturbing the cells lying on the microwell bottom; (D) Cell secretions and signaling lead to

establishment of cell–cell interactions on the non-adherent microwell bottom; (E) Driving spheroid

formation under a perfusing flow of culture medium. Republished with permission of Elsevier, from

Moshksayan et al.2018 [78]; permission conveyed through Copyright Clearance Center, Inc.

Section 3.2.3 Characterization of pharmaceutical nano- and microsystems using organ-on-a-

chips

By enabling simulation of dynamic fluid flows, chemical and oxygen gradients, and partitioning

between organs, microfluidic organ-on-a-chips o er a cost-e icient approach to rapid in vitro

screening of pharmaceutical nanocarriers in physiologically relevant conditions. As most

pharmaceutical nanocarriers are intravenously administered into the blood, the preliminary work on
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microfluidic devices has addressed optimal nanoparticle (NP) design, e.g., via NP margination, e ect

of vessel geometry and shear stress on NP accumulation, interactions between red blood

cells/platelets and NPs, and vessel permeability on NP translocation [31]. Microfluidic organ-on-a-

chips have also been developed to assess the NP haemocompatibility [79] and NP transport across

the blood-brain-barrier [80] and the alveolar–capillary barrier in the lungs [81]. The classical example

of a microfluidic lung-on-a-chip device, capable of mimicking the mechanical distortion of the

alveolar–capillary interface during normal breathing, is illustrated in Figure 7. Besides these selected

examples, a variety of organ-on-a-chip models, including single cell traps, have been developed to

enable assessment the cellular uptake and cytotoxicity of NPs under microfluidic flow, so as to avoid

inaccuracies associated with, e.g., NP sedimentation (common to static cell cultures). For a more

comprehensive overview, the reader is advised to familiarize with references [6,31].

Figure 7. Biologically inspired design of a human breathing lung-on-a-chip microdevice. (A) The

microfabricated lung-mimicking device uses compartmentalized PDMS microchannels to form an

alveolar-capillary barrier on a thin, porous, flexible PDMS membrane coated with ECM. The device

recreates physiological breathing movements by applying vacuum to the side chambers and causing

mechanical stretching of the PDMS membrane forming the alveolar-capillary barrier. (B) During

inhalation in the living lung, contraction of the diaphragm causes a reduction in intrapleural pressure

(Pip), leading to distension of the alveoli and physical stretching of the alveolar-capillary interface.

(C) Three PDMS layers are aligned and irreversibly bonded to form two sets of three parallel

microchannels separated by a 10-mm-thick PDMS membrane containing an array of through-holes

with an effective diameter of 10 mm. Scale bar, 200 mm. (D) After permanent bonding, PDMS

etchant is flowed through the side channels. Selective etching of the membrane layers in these

channels produces two large side chambers to which vacuum is applied to cause mechanical
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stretching. Scale bar, 200 mm. (E) Images of an actual lung-on-a-chip microfluidic device viewed

from above. Republished with permission of the American Association for the Advancement of

Science, from Huh et al.2010 [81]; permission conveyed through Copyright Clearance Center, Inc.

Section 3.3 Immobilized enzyme microreactors for the hepatic safety assessment

The possibility for targeted identification and treatment of tumors remains one of the main drivers of

nanomedicines development [82]. However, the challenges associated with the selectivity of NP

targeting to tumors [82] often results in substantial accumulation and sequestering of NPs to the liver,

by estimates up to 30-99 % of the administered dose [83]. NP accumulation to the liver inevitably

results in reduced NP delivery to the tumor and potentially leads to increased hepatic toxicity at the

cellular level, thus creating a major barrier to clinical translation of NP-based therapies. As a result,

the clinical benefits of NPs so far have mainly arisen from formulations that improve the

pharmacokinetics and toxicity profiles of, e.g., chemotherapeutic agents [84]. This section focuses on

the hepatic safety assessment of nanoparticles (NP) and gives an overview of the development of

microfluidic immobilized enzyme reactors that could facilitate examination of the hepatic (adverse)

effects of nanomedicines under physiologically relevant conditions. In comparison to cell-based in

vitro models, the subcellular enzyme assays likely enable more detailed assessment of the mechanistic

basis of possible NP interactions once uptaken by cells. Similar to cell-based assays, conducting these

experiments under microfluidic flow will help to avoid inaccuracies associated with, e.g., NP

sedimentation. Microfluidic actuation also allows for precise control of the NP exposure time so as

to determine whether the possible impacts are reversible or permanent in nature.

Section 3.3.1 Nanoparticle impacts on the hepatic clearance of xenobiotics

The nonspecific accumulation of NPs within the liver can be explained by its normal physiology.

Since the metabolism and clearance of foreign materials are the primary functions of the liver,

engineered NPs that cannot be cleared by the renal system (threshold ca. >6 nm) will eventually be

processed in the liver [85]. Moreover, the primary mechanism for the passive accumulation of NPs

in tumors is considered to result from the combination of fenestrations in the vasculature and poor

lymphatic drainage from tumors [86], known as the enhanced permeability and retention (EPR) effect

[87]. However, similar fenestrations in the blood vessels are a part of the normal physiology of the

liver and provide the pathway to passive accumulation of NPs to the hepatic tissue [88]. Once trapped

in the liver, NPs have been reported to interact with hepatocytes, liver sinusoidal endothelial cells, B

cells and Kupffer cells [89]. Even NP uptake in the hepatocytes has been reported and is typically
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impacted by the NP surface charge and other chemical modifications [90,91]. As hepatocytes make

up 60 % of all the cells in the liver and are responsible of the metabolism and elimination of most

foreign compounds, including pharmaceuticals, in vivo, understanding the NP interactions in the liver

is critical to the clinical translation of nanomedicine for diagnosing and treating diseases.

If uptaken by hepatocytes, NPs may interact with the cellular content, such as the cytochrome P450

(CYP) system, prior to their elimination via the hepatobiliary route [85]. The CYP system is in charge

of the phase I metabolism of majority of drugs in clinical use [92]. Although further conjugation

reactions (e.g., glucuronidation) may follow CYP metabolism, the substrate specificity associated

with CYPs forms a bottleneck and renders the CYP-mediated metabolic clearance most critical in

respect to the safety and efficacy of medical therapies, especially in case of highly polymorphic

isoforms such as CYP2D6 [93]. Moreover, CYP enzymes are membrane-bound proteins that reside

on the cytosolic side of the endoplastic reticulum (ER) and are thus more liable to NP interactions

compared with, e.g., the phase II uridine 5'-diphospho-glucuronosyltransferases (UGTs), which face

the lumen side of the ER. Currently, several in vitro models exist for studying the hepatic drug

metabolism via the CYP system, including transgenic cell lines and primary hepatocytes, liver

microsomal fractions and recombinant (single) CYP isoforms expressed in insect cell (referred to as

baculosome or supersome in the commercial contexts) [94,95]. Of the different available in vitro

models, the subcellular preparations (microsomes, recombinant enzymes) however provide the most

straightforward approach to mechanism-based interaction screening. Human liver microsomes

(HLM) have become the industry standard for pre-clinical metabolic profiling and drug interaction

studies because of their relative affordability and acceptable in vivo resemblance [95,96][x]. HLMs

consist of vesicles of the hepatocyte ER, prepared by differential centrifugation, so as to ensure that

the microsomal preparation contains all the CYP isoforms as well as the redox-partners. The

recombinant microsomal human CYPs produced in the insect cells are primarily used for preliminary

screening of isoform-specific interaction risks owing to their limited in vivo correlation with respect

to predicting the hepatic clearance. Via protein engineering, it is also possible to manufacture soluble

(not membrane-bound) human CYP isoforms by truncating the hydrophobic N-terminal membrane

bound domain of CYPs [97][x]. However, this neither omits the need for the auxiliary proteins or an

electron source nor provides a viable model with a view to in vivo predictions.

The research regarding CYP interactions has mainly centered around metallic NPs (silver, gold),

which have been shown to alter the CYP metabolism both in vitro and in vivo [98]. In most in vitro

studies, the impact of silver NPs on human and rat CYP system (assessed based on liver microsomes

or recombinant enzymes) has been weak or insignificant [99–101], although moderate inhibition of
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CYP2C9, CYP2C19, and CYP3A4 activities in human liver microsomes has also been reported [99].

The impacts of gold NPs in vitro are often somewhat similar to those of silver NPs [102–104]. For

example, silver NPs have been reported to cause moderate to strong inhibition of recombinant

CYP1A2, CYP2C9, and CYP2C19 activities in vitro [104], whereas the gold NPs moderately

inhibited recombinant CYP2C9, CYP2C19, and CYP3A4 activities, but not so much the CYP1A2

[104]. However, the in vivo interactions vary greatly depending on the NP type, size and charge,

which are the critical NP properties in terms of cellular uptake. For example, almost 28-fold increase

in the CYP1A1 expression in rats in vivo was reported after a single intravenous injection of gold

NPs [102]. In case of silver NPs, the strong inhibition of CYP2C and 2D activities observed in rat

liver microsomes in vitro was not reproduced in vivo [101].

Generally, the risk for CYP inhibition tends to increase as a function of decreasing particle size, as

has been confirmed by both gold and carboxyl polystyrene NPs [103,105]. In addition to size, the

surface charge is known to alter the NP uptake by hepatic cell types due to differences in protein

adsorption to the NP surface and the electrostatic interactions between the NPs and the cell membrane

[106,107]. However, the limited data available of NP uptake in hepatocytes results in intricate in

vitro-in vivo correlation with respect to the CYP inhibition. Moreover, the subcellular fractions (such

as liver microsomes) commonly used in the enzyme inhibition studies in vitro are not capable of

predicting the possible NP impacts on gene expression (i.e., CYP induction). Nevertheless, the

determination of the NP impacts on the in vitro clearance of drugs via the CYP system could provide

the preliminary tool for identification of possible hazardous NP-drug interactions. For example, the

pioneering work with porous silicon based NPs reported significantly reduced activity (ca. 50-60 %

of the control, p<0.001) for the highly polymorphic CYP2D6 in human liver microsomes in the

presence of NPs independent of their surface chemistry or charge [108]. Besides enzyme activity

(VMAX), the NPs were shown to alter the enzyme affinity (KM) so that the total intrinsic clearance

(CLint) was most impacted by the alkyne-modified porous silicon NPs. Owing to the relatively large

size of the porous silicon NPs used in the study (160–180 nm), competitive binding to the enzyme’s

active size (typically below 3 nm3 [109]) was not likely. Instead, the inhibition mechanism was

concluded to be combination of noncompetitive and uncompetitive binding [108]. Considering the

highly variable expression of CYP2D6 between individuals (rapid vs. slow metabolizer genotypes)

[92], these preliminary in vitro findings suggest that NP interactions with the CYP system should not

be neglected. Currently, the “assay cascade” for the characterization of nanomaterials, developed by

the European Nanomedicine Characterisation Laboratory (EUNCL), does not include

characterization of the CYP interactions, but focuses on determination of the physical and chemical

properties of NPs, as well as screening of their immunological, hematological, and toxicological
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properties in vitro [110]. The microfluidic subcellular characterization techniques reviewed in the

next section could provide the means for high-throughput preliminary screening of the impacts of

NPs on the CYP system in vitro. Besides NP effects, the same technology readily fits for screening

of drug-drug interactions under microfluidic flow, e.g., in combination with controlled release studies.

Section 3.3.2 Cytochrome P450 interaction studies in through-flow conditions

In microfluidic cell-based assays, the cells are readily adhered to the microchannel bottom strong

enough that they remain “immobilized” upon application of the through-flow, if the flow-induced

shear stress is tolerable. In contrast to intact cells, the use of cellular components, such the

microsomes or recombinant enzymes, requires custom methodology for incorporating the enzymes

into the microchannel in a permanent fashion. Once immobilized, the enzymes are compartmentalized

in a confined space, which facilitates both spatial and temporal control of, e.g., NP exposure with the

help of microfluidic through-flow. In enzyme kinetic characterization, the microfluidic actuation

enables the creation of concentration gradients of the substrate of interest and thus determination of

the kinetic constants with a single experiment [111–113]. From the analysis viewpoint, enzyme

immobilization omits the need for sample purification (separation of the protein and lipid content

from the analytes of interest), which facilitates online coupling of the reactor to a mass spectrometer,

for example [114]. Though, this approach is applicable to NP characterization only to a limited extent.

Sometimes, immobilization also enhances the stability of the enzymes toward denaturation during

both storage and use. Section 3.3.2.1 gives an overview of the commonly used strategies feasible for

enzyme immobilization on microfluidic devices and the special precautions that should be accounted

for when establishing immobilized CYP microreactors. Section 3.3.2.2 provides additional

considerations regarding the design of the microreactors and the selection of the microfabrication

materials.

Section 3.3.2.1 Immobilization strategies for cytochrome P450 enzymes

The CYP system as a whole comprises of multiple membrane-bound cooperative enzymes, which

places an extra challenge to the drafting of biologically relevant immobilization strategies. Besides

CYP isoforms, various redox partner enzymes are required to supply electrons for the metabolism

reactions, most importantly nicotinamide adenine dinucleotide phosphate-cytochrome P450

reductase (NADPH-CPR) [115,116]. In addition, the reactions will require both oxygen and NADPH

as cofactors and the enzymes need to remain in their natural environment, embedded in the lipid

bilayer, to maintain their activity [117]. The immobilization as well as operation conditions should
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also be gentle enough to ensure that the enzymes are not denatured during the process. For example,

elevated temperatures [118], organic solvents [119] and oxygen radicals generated in CYP-mediated

reactions [120,121] have all been reported to promote CYP inactivation. To be able to draw clinically

relevant conclusions based on the in vitro data of the immobilized enzymes, the kinetic parameters

should remain unchanged compared with nonimmobilized enzymes, which complicates the use of

scaffold-based immobilization techniques and incorporation of chemical modifications to the protein

structures [113]. The pros and cons of the common enzyme immobilization techniques with respect

to CYP immobilization are briefly discussed below. These techniques are generally divided into three

main categories: Enzymes can either be (i) entrapped inside a porous matrix, (ii) cross-linked with

each other to form enzyme aggregates or crystals, or (iii) bound to an inert support material via

physical (adsorption) or chemical interactions (covalent or affinity-based binding) (Figure 8).

Figure 8. Schematic representation of the main different methods of enzyme immobilization.

E: enzyme, P: inert protein. Republished with permission of Elsevier, from Sassolas et al. 2012 [122];

permission conveyed through Copyright Clearance Center, Inc.

With the entrapment techniques, enzymes are physically retained inside a natural or synthetic polymer

matrix, which is synthetized in the presence of the enzyme. The matrix forms physical constraints

that enable mechanical enzyme immobilization in high volumetric concentrations and relatively mild

immobilization conditions [123,124]. Entrapment is thus readily feasible for immobilization of both

soluble and membrane-bound enzymes, as it does not require any specific chemistry. However, the

density of the matrix plays a critical role and has to be carefully optimized to avoid enzyme leaching

(too loose matrix) and diffusion-limited kinetics resulting from retarded mass transfer (too dense

matrix) [125].On microfluidic devices, both sol-gels [126] and hydrogels [127] have been used as

matrices for enzyme entrapment, but hydrogels are often preferred because of their better

transparency and biocompatibility (no toxic reagents needed for polymerization) [128]. Commonly

used hydrogels include, e.g., synthetic polyethylene glycol and polyacrylamide as well as chitosan,
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agarose and other polymeric biomolecules [129]. In a pioneering work, the shelf-life of HLM (during

storage) was substantially improved (weeks vs. days) as the result of sol-gel entrapment, but the

enzyme affinity (testosterone to CYP3A4) was simultaneously increased compared to that of

nonimmobilized enzymes [126]. The CYP activities of entrapped HLM are generally similar to those

of nonimmobilized enzymes, but long-term stabilities during use are seldom reported. Besides gel-

based matrices, HLMs have also been entrapped in microfluidic devices with the help of porous (Æ0.4

µm) polycarbonate membranes [130].

In contrast to scaffold-based enzyme immobilization, scaffold-free enzyme macroparticles can be

prepared via crosslinking, including cross-linked enzyme crystals (CLECs) and cross-linked enzyme

aggregates (CLEAs) [125,128]. CLECs are typically prepared from crystallized enzyme by the

addition of a bifunctional reagent, such as glutaraldehyde, which results in stable and highly active

enzyme particulates of controlled size. Compared with CLECs, crosslinking of aggregates (CLEAs)

is somewhat easier and does not necessarily require as high enzyme purity. However, neither of the

two techniques is very well feasible for immobilization of membrane proteins, such as mammalian

CYPs, and crosslinking approaches have thus been primarily used for soluble bacterial CYPs only

[131,132].

The enzyme binding on support materials can be either covalent or non-covalent. Covalent binding

typically relies on functional groups (-NH2 and -COOH) naturally occurring in enzymes. This often

results in nonuniform orientation with respect to the active site of the immobilized enzymes, as it is

difficult to control where in the amino acid chain the covalent bond will form. If the enzyme’s active

site is ‘face down’ toward the support material, the overall activity is inevitably decreased because of

apparent steric hindrance. Therefore, spacer molecules, attached to the support material prior to

enzyme binding, are often employed to distance the enzyme from the surface [133]. Covalent binding

usually allows for a relatively stable anchorage of the enzyme to the carrier surface. However, if the

charged amino acid residues are extensively employed by the covalent bonds, the enzyme’s surface

charge, and thus its natural conformity may change and activity decrease upon immobilization [134],

although increased activities have also been reported [135]. In a prior work, CYP2C9 baculosomes

were covalently bound on magnetic particles with the carbodiimide method to create a packed bed

capillary reactor compatible with online capillary electrophoresis analysis [136]. Although the setup

facilitated enzyme kinetic determinations in through-flow conditions, rapid activity loss of the

immobilized enzyme during the measurements was reported. In most other reports, covalent binding

has mainly been applied to soluble recombinant CYPs (lacking the hydrophobic N-terminus

sequence) [137–139]. However, the disadvantage of soluble enzyme systems is the lack of auxiliary
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proteins (redox partners), which need to be separately introduced along with the through-flow [137]

or immobilized onto the same carrier. Adjusting the stoichiometric ratios and the spatial relationships

of the different redox proteins is however technically and economically challenging. Moreover, with

respect to in vitro-in vivo extrapolation, the immobilized enzymes should ideally maintain their

physiology unchanged, which reduces the biological significance of the in vitro data derived from

soluble (not membrane-bound) enzymes.

The non-covalent methods (Figure 8) can be divided into physical (hydrophobic and van der Waals

interactions), ionic (electrostatic interactions), and affinity-based (e.g. antibody-mediated binding)

methods [125,134]. Weak noncovalent interactions do not usually alter the tertiary structure of the

enzymes as much as covalent binding, which helps the enzymes to retain their natural activity [140].

However, the non-covalently bound enzymes are easily washed away from the carrier surface,

especially at elevated temperatures, owing to their low binding energies compared with covalent

binding [125,134]. An exception is affinity-based biotin-avidin binding, which has been exploited to

immobilize recombinant CYPs by incorporating biotin tag to the protein structure and binding the

biotinylated CYPs on avidin-coated chromatography column [141]. However, this approach too

required chemical modification of the protein structure, which resulted in loss of the enzyme activity

at physiological temperatures. In another work [142], biotin-containing, unilamellar fusogenic

liposomes were employed to transfer the biotin tag to the HLM membrane (Figure 9), which is

substantially less laborious and  more universal protocol compared with biotin-labeling of the protein

structure [141]. By modifying the lipid membrane instead of the protein structure, the overall

immobilization process was gentle enough that the enzyme kinetic parameters remained similar to

those of nonimmobilized enzymes [142]. Besides fusogenic liposomes, artificial lipid bilayers

prepared on solid supports have also been employed to immobilize microsomal vesicles via

membrane fusion [143].
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Figure 9. Immobilization of human liver microsomes (HLM) on streptavidin-functionalized

magnetic particles with the help of fusogenic liposomes. a) A schematic describing the membrane

fusion between biotin-containing fusogenic liposomes and HLM resulting in biotinylated HLM. b)

Isoenzyme-specific KM values (±standard error) of four main CYPs for immobilized and non-

immobilized (soluble) HLMs. Republished with permission of John Wiley and Sons, from Kiiski et

al. 2019 [142]; permission conveyed through Copyright Clearance Center, Inc.

Section 3.3.2.2 Microfabrication materials and design considerations

In addition to enzyme activity and stability, implementation of microfluidic immobilized enzyme

reactors necessitates careful selection of proper microfabrication materials as well as mindful design

of the through-flow reaction chamber. Integration of scaffold-based immobilization matrices with a

microfluidic network is relatively straightforward. For example, polyethylene glycol based hydrogels

can be microstructured in situ (through the microchannel cover layer) by UV lithography, provided

the covering layer is transparent to the chosen wavelengths [127]. But as the scaffold-based systems

suffer from retarded diffusion, direct binding of enzymes on a solid support material is practically the

better choice for enzyme kinetic determinations. However, functionalization of mere microchannel

walls rarely enables immobilization of high enough amount of enzymes to produce detectable

amounts of metabolites for deriving the kinetic parameters. The total surface area (per volume)

available for enzyme binding is typically increased by “packing” the microreactor with, e.g.,

microbeads [136,137] or porous polymer monoliths [144,145] (Figure 10). Microstructured pillar

arrays similar to those in Figure 2 in Section 3.1 can also be used to increase the total surface area

[142,146,147].
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Figure 10. Typical designs for increasing the surface-to-volume ratio of microfluidic channels:

(a) wall-coated type channel, (b) packed-bed type channel and (c) monolithic type channel.

Republished with permission of the Royal Society of Chemistry, from Zhu et al. 2020 [148];

permission conveyed through Copyright Clearance Center, Inc.

Microchannel packing with beads is relatively straightforward: The beads can be introduced into the

channel by injecting and retained with the help of magnetic field (in case of magnetic microbeads

[149]) or microfabricated frit structures (Figure 11a). There is also a wide range of commercially

available microbeads with different surface chemistries for both affinity-based and covalent binding

of enzymes. However, tight microbead packings easily increase the back pressure in the microfluidic

system and thus necessitate strong bonding between the microchannel bottom and cover layers,

rendering for instance PDMS hardly feasible for packed bed applications. In situ curing of porous

polymer monoliths by UV (through the microchannel cover layer) or heating, in the presence of

porogens, is also a relatively straightforward process, which only requires UV transparent or

thermally stable microfabrication materials. Compared with microbead-based packings, the porous

polymer monoliths typically show lower back pressures and do not require mechanical frit structures

as there is no risk of solid phase escape similar to that of packed beads [150,151]. However,

controlling the pore size uniformity and the homogeneity of the packed bed may be challenging.

Especially seamless anchoring of the monolith to the microchannel surfaces is often difficult and

gives rise to void volumes at the sharp corners and microchannel edges unless special anchoring
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chemistry is applied (Figure 11b) [152]. More importantly, both microbead-based packings and

porous polymer monoliths may retard the mass transfer into and out of the immobilized enzymes

similar to the scaffold-based immobilization matrices. As the result, the micropillar arrays often

appear as the most feasible “packing” strategy for enzyme kinetic determinations, especially in the

context of NP characterization.

(a)

(b)

Figure 11. (a) Scanning electron micrograph of microfabricated frit structures (left) acting as a

mechanical barrier to retain fluorescent microbeads injected into a microfluidic channel (right,

topview). Republished with permission of Elsevier, from Haapala et al. 2010 [153]; permission

conveyed through Copyright Clearance Center, Inc. (b) Methacrylate-based porous polymer

monoliths cured in situ in an unmodified (A1, A2) and modified (B1, B2) PDMS microchannel

illustrating the void volume next to the microchannel wall (A2) if anchoring of the polymer monolith

is deficient. Republished with permission of AIP Publishing, from Burke and Smela 2012 [152];

permission conveyed through Copyright Clearance Center, Inc.

Ordered micropillar arrays can be made with high precision from silicon by anisotropic etching

[147,154] or from polymer photoresists by direct UV lithography [155]. The lithographically defined

micropillar arrays may also act as master molds for replicating the structures into other UV and heat

curable polymers or thermoplasts, as described in Section 3.1, although the achievable aspect ratios

of replicated pillars may be limited compared with direct microfabrication techniques [18]. Although
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silicon (oxide) readily facilitates a multitude of surface reactions, especially the possibility to use

replication techniques increases the freedom in material selection with a view to enzyme

immobilization on micropillar surfaces. Thus, from the material perspective, many different

chemistries are available for enzyme immobilization, but they all have their specific requirements in

terms of, e.g., pH, temperature, and applicable solvents, which need to match with the properties of

the fabrication material [156]. For example, PDMS has very limited solvent compatibility as it tends

absorb the solvent molecules and swell upon exposure [157]. PDMS is also inherently hydrophobic

and relatively inert, which complicates its chemical surface modification [158,159]. Typically, some

kind of chemical surface modification, i.e., covalent coupling of appropriate linker molecule, is a

prerequisite for enzyme immobilization directly on micropillar surfaces, although some polymer

surfaces readily contain functional groups. For example, the OSTE polymers feature either free

surface thiols or allyl groups, the density of which can be tuned by simply manipulating the molar

ratio of the thiol and allyl monomers in the bulk composition [20]. Especially the free thiol groups of

the OSTEs have been extensively employed in a variety of microfluidic immobilized enzyme reactors

making use of, e.g., photopolymerization [142,160] or gold nanoparticle interaction with the free thiol

residues on both the chip surface and in the protein structure [18]. Besides surface chemistry, attention

should be paid on the possible nonspecific interactions between the polymers and the biomolecules

to ensure that the catalytic activity is not lost because of protein fouling. Many commonly used

polymers, including PDMS, tend to adsorb biomolecules [159]. A common solution is to

functionalize the surface with polyethylene glycol, which not only reduces the non-specific binding

[161][x], but may also increase the enzyme activity via the reduction of steric constraints and

stabilization of the protein structure [162]. To certain degree, the non-specific binding may also be

prevented by oxygen plasma treatment [163,164], although the impact is typically reversible.

Sometimes, the plasma treatment may however give rise to newly formed functional groups, which

may then be used for further chemical coupling reactions [165].

From the design perspective, the primary benefits of microstructured pillar arrays over other packing

strategies include the possibility to adjust and control the total surface area in a reproducible manner,

which is critical to be able to quantitate the amount of the bound enzyme. Furthermore, by adjusting

the geometry and dimensions of the micropillars (diameter, spacing), the surface-to-volume ratio may

also be optimized so as to avoid diffusion-limited kinetics and to maximize the amount of the

immobilized enzyme. The ordered micropillar arrays also support capillary filling [154] and reduce

pressure differences within the microchannel. In addition to the amount of immobilized enzyme, the

microchannel design impacts the enzymatic reaction time, which is equal to the residence time of the

target components inside the microfluidic device. Besides flow rate (linear velocity), the residence



Chapter 3

26

time can be adjusted by manipulating the microchannel dimensions (width, length) as illustrated in

Figure 12. Under optimized conditions, the metabolic activity should be stable over time and, in case

of CYP enzymes, often dependent on the reaction temperature, as illustrated in Figure 13. To maintain

physiological temperature, the microreactors may be placed in an incubator, on a hot plate or on an

external resistive heater element. In addition, microfabricated resistive heater elements may also be

integrated with the microfluidic channels via thin-film metallization. Besides temperature control,

mixing of the reagents may be necessary for creating the concentration gradients over time. For

comprehensive review of the heating and mixing possibilities on microfluidic devices, the reader is

advised to familiarize with relevant prior reviews [166,167].

Figure 12. Representative configuration designs of microfluidic chips that can be used for adjusting

the residence time: (a) single-channel chip, (b) serpentine-channel chip, (c) multi-channel chip and

(d) planar chamber chip. Republished with permission of the Royal Society of Chemistry, from Zhu

et al. 2020 [148]; permission conveyed through Copyright Clearance Center, Inc.
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Figure 13. Top: A micropillar-based immobilized enzyme reactor made from OSTE polymers by

replication techniques and functionalized with biotin-alkyne by photopolymerization and streptavidin

via biotin-avidin binding, prior to immobilization of biotinylated HLM to the streptavidin surface.

Left: Photograph of the microfluidic setup. Right: Stability of the CYP activity over time on the OSTE

reactor. Republished with permission of John Wiley and Sons, from Kiiski et al. 2019 [142];

permission conveyed through Copyright Clearance Center, Inc.

Section 3.4 Microfluidic total analysis systems

This section provides a brief overview of the future prospects regarding system level integration

possibilities facilitated by microfabrication of miniaturized separation and sample preparation

systems as integral parts of the microfluidic in vitro models. Here, the focus will be on microfluidic

total chemical analysis systems feasible for characterization of the impacts of nanomedicine on, e.g.,

cell metabolism or drug elimination on a molecular level, rather than characterization of the properties

of pharmaceutical nano- and microsystems. Besides molecular chemical analysis, a wealth of

microfluidic techniques have also been developed for various particle sorting needs [168], but these

techniques are typically applicable to micrometer-sized particles only. However, somewhat similar

approaches and techniques can be used for cell separation and sorting on microfluidic devices [169],

which may appear useful for the characterization of the impacts of nanomedicine in selected cases.

Regarding chemical analysis with the help of microfluidic devices, the separation systems reviewed

below represent the gold standard techniques originally established to speed up the analysis of small



Chapter 3

28

organic molecules, peptides, and proteins in biological and synthetic matrices. To date, these

techniques have hardly been applied to characterization of nanomedicine and therefore this section

provides only a brief discussion of the main available techniques and their current technology

readiness level, which sets the framework for their possible future use in the context of nanomedicine

characterization. Comprehensive reviews of the feasibility of these techniques to metabolomics,

proteomics, and other clinical and forensic applications can be found elsewhere [2,170,171].

Section 3.4.1 Microfluidic separation systems

The entire evolution of microfluidic total analysis systems (a.k.a. lab-on-a-chip) originates from the

pioneering works in early 1990’s, which set the theoretical frame and experimental evidence for rapid

chemical sensing on a microfabricated, planar glass chip by a technique called microchip capillary

(zone) electrophoresis [8,9]. This technique has since became the gold standard for microfluidic

separations and also transferred to practically any available microfabrication material. In microchip

electrophoresis, the sample solution is introduced into a microfabricated separation channel via an

intersecting side (injection) channel (Figure 14a) [172]. Compared with conventional capillary-based

electrophoresis, the initial sample plug is much narrower [173], which enables significantly short

separation times (at best <1 min) under high electric field. As the result, the length of the separation

column can be decreased (from ca. 1 m to only a few centimeters) and much lower separation voltages

can be used on a microfluidic device to reach the same electric field strength (volts per meter), which

is the critical parameter in terms of the resolving power. From the materials perspective, the only

requirements are that the microchannel surfaces are charged and do not non-specifically adsorb the

target analytes. In practice, most microfabrication materials maintain cathodic electroosmosis, even

if the bulk composition does not contain any functional groups. According to a theory, the apparent

negative surface charge may originate from adsorption of hydroxyl ions to the microchannel surfaces

[174]. Instead, non-specific adsorption (biomolecule fouling) is a pronounced problem with many

polymer materials, especially PDMS, which often needs to be coated to avoid surface interactions

[175]. However, inherently biofouling-resistant materials also exist, such as the lithographically

defined organically modified ceramics [176].
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(a)  (b)

(c)

(d)  (e)

Figure 14. (a) Sample loading and dispensing steps on a microchip electrophoresis device.

Republished with permission of Springer Nature, from Fu and Tsai 2008 [177]; permission conveyed

through Copyright Clearance Center, Inc. (b) An example of electrophoretic separation of fluorescent

derivatized amino acids on a microchip made of organically modified ceramics. Republished with

permission of the American Chemical Society, from Sikanen et al. 2010 [25]; permission conveyed

through Copyright Clearance Center, Inc. (c) Experimental arrangement of microchip electrophoresis

in combination with fluorescence detection. Republished with permission of Elsevier, from Kim et

al. 2005 [178]; permission conveyed through Copyright Clearance Center, Inc. (d) Photograph and

schematic view of a commercial electrophoresis chip featuring platinum electrodes for amperometric

detection. BI/BO=buffer inlet/outlet. SI/SO=sample inlet/outlet.

WE/RE/AE=working/reference/auxiliary electrode. Republished with permission of Springer Nature,

from Ollikainen et al. 2019 [179]; under the terms of the Creative Commons Attribution 4.0
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International License. (e) An SU-8-based electrophoresis chip featuring an integrated, sharp opening

at the microchannel outlet for electrospray ionization mass spectrometry. BI=buffer inlet.

SI/SO=sample inlet/outlet. SLI=sheath liquid inlet. Republished with permission of John Wiley and

Sons, from Nordman et al. 2010 [180]; permission conveyed through Copyright Clearance Center,

Inc.

In a classical setup, the electrophoresis chip is interfaced with a standard epifluorescence microscope

to facilitate monitoring of the fluorescence signal over time perpendicular to the separation channel

(Figure 14c). As the microchannel heights are typically in the range of few tens of micrometers only,

the optical path length on microfluidic devices is significantly short and optical absorbance detection

thus often compromised. Via thin-film metallization, it is also possible to integrate electrodes to the

microchannel bottom layer [181] so as to enable electrochemical detection of the separated sample

components at the end of the separation channel (Figure 14d). However, metal adhesion to the bottom

layer, especially in case of polymer devices as discussed in Section 3.2.1, as well as sealing of the

metallized microstructures may pose additional challenges to microfabrication of electrochemical

sensor chips [53]. Alternatively, the separation channel outlet can be left open to allow transfer of the

separated components (in liquid phase) into gas phase ions with the help of electrospray ionization

(Figure 14e). In this manner, the microfluidic separation devices may also be interfaced with mass

spectrometric (MS) detection. The stability of the electrospray ionization (gas-phase transition), and

thus the quality of the MS signal, benefits from a sharp-pointed, overhanging emitter tip structure,

which is however challenging to achieve by most microfabrication methods [182]. An alternative

approach is to attach an external emitter needle or capillary tip at the microchannel outlet. Besides

laborious, this technique is however prone to dead volume generation at the junction point, which

may result in loss of the achieved separation. For a more comprehensive overview of the possibilities

and limitations of the microfluidics interfacing to MS, the reader is advised to familiarize with the

indicated reviews [182,183]. Although microchip electrophoresis appears as a very powerful

separation technique, a considerable technology barrier exists in the translation of the laboratory-

scale methodologies from engineers into commercial or clinical benefit by biologists and

pharmacologists. To large degree, this is because of lack of standardization of both the components

and the techniques, which inevitably decreases the level of automation and thus usability of the

technology in routine analysis. As the result, most of the previous literature centers around proof-of-

concept research, and only in limited cases, the technologies are thoroughly validated for their

intended purpose with authentic samples and datasets [179].
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In addition to microchip electrophoresis, a variety of miniaturized liquid chromatographic (LC)

separation devices have also been developed [184,185] and some even commercialized. The detection

possibilities in microchip LC are similar to those of electrophoresis chips, although most are

interfaced with MS detection. The packing strategies applicable to incorporation of the stationary

phase in the microchannels are practically the same as those used for immobilized enzyme reactors,

including microbead-based packings, porous polymer monoliths, and microfabricated pillar arrays,

typically functionalized with C18 solid phase [184,185]. Overall, the technology readiness level of

microchip LC is closer to commercial level than that of microchip electrophoresis, although in most

designs only the chromatographic column and the ion source facilitating MS detection are integrated

on chip. Very few designs have been reported, where also the micropumps (for actuation) and sample

loading would have been implemented to a single chip similarly as in Figure 15.

Figure 15. Left: Photograph (top) and schematic side view (bottom) of a LC chip featuring integrated,

electrochemical micropumps, a micromixer, a sample injector, reversed phase chromatographic

column, and an electrospray ionization nozzle. Right: Separation of eight tryptic peptides of bovine

serum albumin performed using the LC chip. Republished with permission of the American Chemical

Society, from Xie et al. 2005 [186]; permission conveyed through Copyright Clearance Center, Inc.
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Section 3.4.2 Toward n-in-one analytical platforms

Since 1990’s, the feasibility of microfluidic separation devices has been well-established for a variety

of pharmaceutically and biologically relevant analytical tasks, including analysis of cell metabolites,

drugs and their metabolites, peptides and proteins [2,170,171]. Besides separation systems, a range

of electrokinetic [187], solid phase extraction [188] and affinity-based sample preparation techniques

have also been transferred on microfluidic devices to facilitate online enrichment and purification of

the target analytes prior to their analysis. Although complete integration of all possible operations on

a single chip is not yet a reality (in routine use), one of the key drivers of biologically inspired

microfluidics is nevertheless the possibility to combine two or more microfluidic operations in

sequence or in parallel - so as to improve the efficiency of analysis or to simulate the interplay

between selected model organs in a systemic fashion in vitro. A classical example of an integrated

microfluidic device, applied to drug cytotoxicity screening and featuring multiple parallel units for

sequential cell culturing, sample preparation, and MS detection, is presented in Figure 16. Another

somewhat similar concept combined immobilized enzyme reactors (HLM entrapped in polyethylene

glycol), microfluidic culture of human hepatocellular carcinoma cells, and an integrated solid-phase

extraction (SPE) unit with online MS analysis to study the cytotoxicity associated with drug

metabolites [189]. Overall, majority of the previous literature centers around n-in-one pressure-driven

analytical platforms, whereas integration of the molecular separation systems with the in vitro models

is still rare. At least in part, this is due to certain technical requirements of microchip electrophoresis

and LC configurations (i.e., high voltages and high pressures, respectively), which complicate their

seamless integration with, e.g., cell-based assays. From this perspective, increasing interest toward

modular microfluidics may pave the way for true lab-on-a-chip.
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Figure 16. Schematic diagram of the chip−ESI-MS system. (a) The system consists of a microfluidic

network for culture medium and drug injections, cell culture chambers, on-chip micro-SPE columns

for sample desalting and purifying, and an ESI-Q-TOF-MS. (b) Microfluidic network design for the

concentration gradient generator during cell culture and drug screening. (c) Magnified view of the

MCF-7 cells culture chamber for cell metabolism on the microfluidic chip. (d) Magnified view of an

integrated micro-SPE column on the microdevice for sample pretreatment prior to ESI-MS detection.

(e) The ESI source was coupled with the micro-SPE column together by capillaries. Republished with

permission of the American Chemical Society, from Chen t al. 2005 [190]; permission conveyed

through Copyright Clearance Center, Inc.

Section 3.5 Epilogue

To date, a wealth of microfluidic platforms have been developed that facilitate detailed in vitro

analysis of biological pathways on organ, cell and molecular levels. As the technology readiness level

and automation increases, the integrated ‘body-on-a-chip’ platforms will become a viable and

biologically relevant in vitro model for preclinical drug testing, thus reducing the need for laboratory

animals and improving the quality of in vitro-in vivo predictions. By using a microfluidic platform

that connects multiple engineered tissues from different organs, it is possible to replicate human organ

interactions for weeks at a time, allowing us to measure the systemic drug effects on different parts

of the body. Thereby, microfluidics may also pave the way to increased translation of nanomedicine

into clinical use, for instance, by improving the prediction of NP targeting to the desired tissue already

in the in vitro phase. The aim of this chapter was to bring the reader near to the relevant literature by

highlighting three application areas most relevant to characterization of pharmaceutical nano- and

microsystems.
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