47 research outputs found

    The great melting pot. Common sole population connectivity assessed by otolith and water fingerprints

    Get PDF
    Quantifying the scale and importance of individual dispersion between populations and life stages is a key challenge in marine ecology. The common sole (Solea solea), an important commercial flatfish in the North Sea, Atlantic Ocean and the Mediterranean Sea, has a marine pelagic larval stage, a benthic juvenile stage in coastal nurseries (lagoons, estuaries or shallow marine areas) and a benthic adult stage in deeper marine waters on the continental shelf. To date, the ecological connectivity among these life stages has been little assessed in the Mediterranean. Here, such an assessment is provided for the first time for the Gulf of Lions, NW Mediterranean, based on a dataset on otolith microchemistry and stable isotopic composition as indicators of the water masses inhabited by individual fish. Specifically, otolith Ba/Ca and Sr/Ca profiles, and delta C-13 and delta O-18 values of adults collected in four areas of the Gulf of Lions were compared with those of young-of-the-year collected in different coastal nurseries. Results showed that a high proportion of adults (>46%) were influenced by river inputs during their larval stage. Furthermore Sr/Ca ratios and the otolith length at one year of age revealed that most adults (similar to 70%) spent their juvenile stage in nurseries with high salinity, whereas the remainder used brackish environments. In total, data were consistent with the use of six nursery types, three with high salinity (marine areas and two types of highly saline lagoons) and three brackish (coastal areas near river mouths, and two types of brackish environments), all of which contributed to the replenishment of adult populations. These finding implicated panmixia in sole population in the Gulf of Lions and claimed for a habitat integrated management of fisherie

    Revisiting in vivo staining with alizarin red S - a valuable approach to analyse zebrafish skeletal mineralization during development and regeneration

    Get PDF
    Background The correct evaluation of mineralization is fundamental for the study of skeletal development, maintenance, and regeneration. Current methods to visualize mineralized tissue in zebrafish rely on: 1) fixed specimens; 2) radiographic and ΌCT techniques, that are ultimately limited in resolution; or 3) vital stains with fluorochromes that are indistinguishable from the signal of green fluorescent protein (GFP)-labelled cells. Alizarin compounds, either in the form of alizarin red S (ARS) or alizarin complexone (ALC), have long been used to stain the mineralized skeleton in fixed specimens from all vertebrate groups. Recent works have used ARS vital staining in zebrafish and medaka, yet not based on consistent protocols. There is a fundamental concern on whether ARS vital staining, achieved by adding ARS to the water, can affect bone formation in juvenile and adult zebrafish, as ARS has been shown to inhibit skeletal growth and mineralization in mammals. Results Here we present a protocol for vital staining of mineralized structures in zebrafish with a low ARS concentration that does not affect bone mineralization, even after repetitive ARS staining events, as confirmed by careful imaging under fluorescent light. Early and late stages of bone development are equally unaffected by this vital staining protocol. From all tested concentrations, 0.01 % ARS yielded correct detection of bone calcium deposits without inducing additional stress to fish. Conclusions The proposed ARS vital staining protocol can be combined with GFP fluorescence associated with skeletal tissues and thus represents a powerful tool for in vivo monitoring of mineralized structures. We provide examples from wild type and transgenic GFP-expressing zebrafish, for endoskeletal development and dermal fin ray regeneration

    Feeding Behaviour, Swimming Activity and Boldness Explain Variation in Feed Intake and Growth of Sole (Solea solea) Reared in Captivity

    Get PDF
    The major economic constraint for culturing sole (Solea solea) is its slow and variable growth. The objective was to study the relationship between feed intake/efficiency, growth, and (non-) feeding behaviour of sole. Sixteen juveniles with an average (SD) growth of 2.7 (1.9) g/kg0.8/d were selected on their growth during a 4-week period in which they were housed communally with 84 other fish. Selected fish were housed individually during a second 4-week period to measure individual feed intake, growth, and behaviour. Fish were hand-fed three times a day during the dark phase of the day until apparent satiation. During six different days, behaviour was recorded twice daily during 3 minutes by direct observations. Total swimming activity, frequency of burying and of escapes were recorded. At the beginning and end of the growth period, two sequential behavioural tests were performed: “Novel Environment” and “Light Avoidance”. Fish housed individually still exhibited pronounced variation in feed intake (CV = 23%), growth (CV = 25%) and behavior (CV = 100%). Differences in feed intake account for 79% of the observed individual differences in growth of sole. Fish with higher variation in feed intake between days and between meals within days had significantly a lower total feed intake (r = −0.65 and r = −0.77) and growth. Active fish showed significantly higher feed intake (r = 0.66) and growth (r = 0.58). Boldness during both challenge tests was related to fast growth: (1) fish which reacted with a lower latency time to swim in a novel environment had significantly higher feed intake (r = −0.55) and growth (r = −0.66); (2) fish escaping during the light avoidance test tended to show higher feed intake (P<0.1) and had higher growth (P<0.05). In conclusion, feeding consistency, swimming activity in the tank, and boldness during behavioral tests are related to feed intake and growth of sole in captivity

    DIFFUSION ÉLASTIQUE DES NEUTRONS DE 14 MeV PAR LE POTASSIUM

    No full text
    Nous avons mesurĂ© la section efficace totale et la section efficace diffĂ©rentielle de diffusion Ă©lastique des neutrons de 14 MeV par le potassium. Nous analysons ces rĂ©sultats au moyen d'un potentiel optique non local. Nous pouvons obtenir un accord satisfaisant pour la section efficace de diffusion Ă©lastique, mais non pour la section efficace totale.Experimental results for the total cross section and differential elastic scattering cross section are given. A theoretical analysis is made using a non-local optical model. We find good agreement for σe1(Ξ), but not for σTT

    Mobile demersal megafauna at artificial structures in the German Bight – Likely effects of offshore wind farm development

    Get PDF
    Within the next few decades, large underwater structures of thousands of wind turbines in the northern European shelf seas will substantially increase the amount of habitat available for mobile demersal megafauna. As a first indication of the possible effects of this large scale habitat creation on faunal stocks settling on hard substrata, we compared selected taxa of the mobile demersal megafauna (decapods and fish) associated with the foundation of an offshore research platform (a wind-power foundation equivalent) with those of five shipwrecks and different areas of soft bottoms in the southern German Bight, North Sea. When comparing the amount of approximately 5000 planned wind-power foundations (covering 5.1 _ 106 m2 of bottom area) with the existing number of at least 1000 shipwrecks (covering 1.2 _ 106 m2 of bottom area), it becomes clear that the southern North Sea will provide about 4.3 times more available artificial hard substratum habitats than currently available. With regard to the fauna found on shipwrecks, on soft substrata and on the investigated wind-power foundation, we predict that the amount of added hard substrata will allow the stocks of substrata-limited mobile demersal hard bottom species to increase by 25e165% in that area. The fauna found at the offshore platform foundations is very similar to that at shipwrecks. Megafauna abundances at the foundations, however, are lower compared to those at the highly fractured wrecks and are irregularly scattered over the foundations. The upper regions of the platform construction (5 and 15 m depth) were only sparsely colonized by mobile fauna, the anchorages, however, more densely. The faunal assemblages from the shipwrecks and the foundations, respectively, as well as from the soft bottoms clearly differed from each other. We predict that new wind-power foundations will support the spread of hard bottom fauna into soft bottom areas with low wreck densities

    An Efficient Gaussian-Accelerated Molecular Dynamics (GaMD) Multilevel Enhanced Sampling Strategy: Application to Polarizable Force Fields Simulations of Large Biological Systems.

    No full text
    International audienceWe detail a novel multi-level enhanced sampling strategy grounded on Gaussian accelerated Molecular Dynamics (GaMD). First, we propose a GaMD multi-GPUs accelerated implementation within the Tinker-HP molecular dynamics package. We then introduce the new "dual-water" mode and its use with the flexible AMOEBA polarizable force field. By adding harmonic boosts to the water stretching and bonding terms, it accelerates the solvent-solute interactions while enabling speedups thanks to the use of fast multiple–timestep integrators. To further reduce time-to-solution, we couple GaMD to Umbrella Sampling (US). The GaMD—US/dual–water approach is tested on the 1D Potential of Mean Force (PMF) of the CD2–CD58 system (168000 atoms) allowing the AMOEBA PMF to converge within 1 kcal/mol of the experimental value. Finally, Adaptive Sampling (AS) is added enabling AS–GaMD capabilities but also the introduction of the new Adaptive Sampling–US–GaMD (ASUS–GaMD) scheme. The highly parallel ASUS–GaMD setup decreases time to convergence by respectively 10 and 20 compared to GaMD–US and US

    Advances in invertebrates and fish telemetry

    No full text
    This paper analyses acoustic tagging of 8 yellowfin tunas (#Thunnus albacares$, Bonnaterre, 1788) undertaken around Fish Aggregating Devices (FADs) in La Reunion island (Indian Ocean). Emphasis is laid on the horizontal movements and thus complete previous studies on vertical movements around the same FADs. The first result of the present study deals with the relative dwelling time of yellowfin over the distance to FAD where tagged, in 0.9 km intervals. Distributions of dwelling time are different between day and night. During daytime, the fishes remain in the close vicinity of the FAD (mostly within a 1.8 km radius), whilst a drastic disassociation to the FAD occurs at night. During the day, the attractive influence of the FAD disappears 9.3 km away ; this finding leads to the suggestion that a minimum distance of 18 km between neighbouring FADs should be applied in La Reunion to avoid overlapping radii of influence. The second group of results points out the potential use of the vertical and total swimming speeds as indicators of the foraging activity of the fish and of the type of movements (behaviour of tight association to FAD, transit among FADs or offshore migration, away from the area of FADs). The day/night change affects the vertical activity, with large magnitude of vertical movements exhibited at night. The total speed during the offshore movements is estimated about 1.2 m/s : the shift from a phase of tight association to FAD toward a phase of transit movement is characterised by an increase of the total speed. A typology of the relationships between swimming speed and feeding activity is proposed and discussed. (Résumé d'auteur

    Reconciling NMR Structures of the HIV-1 Nucleocapsid Protein (NCp7) using Extensive Polarizable Force Field Free-Energy Simulations

    No full text
    The Human Immunodeficiency Virus Type 1 nucleocapsid 7 (NCp7) is a multi-functional protein formed by N-terminal and C-terminal domains surrounding two Zn-fingers, linked by a stretch of basic residues, which play a key role in the viral replication. We report the first NCp7 polarizable molecular dynamics (MD) study using the AMOEBA force field complemented by non-polarizable CHARMM simulations. Specifically, we compared the relative free-energy stability of two extreme conformations: a compact one having two aromatic residues from each finger, partially stacked, denoted A; and an unfolded one, with the two residues apart, denoted B. Each of these conformations had been previously experimentally advocated to prevail in solution. We compared their theoretical relative free-energy stability using accelerated MD sampling techniques (Steered MD and Umbrella Sampling) and showed that there was a low free energy difference between them. As A and B do not differ in stability by more than 1-1.5 kcal/mol, they should thus coexist in water solution reconciling earlier NMR experimental findings
    corecore