156 research outputs found

    TUT7 catalyzes the uridylation of the 3′ end for rapid degradation of histone mRNA

    Get PDF
    The replication-dependent histone mRNAs end in a stem–loop instead of the poly(A) tail present at the 3′ end of all other cellular mRNAs. Following processing, the 3′ end of histone mRNAs is trimmed to 3 nucleotides (nt) after the stem–loop, and this length is maintained by addition of nontemplated uridines if the mRNA is further trimmed by 3′hExo. These mRNAs are tightly cell-cycle regulated, and a critical regulatory step is rapid degradation of the histone mRNAs when DNA replication is inhibited. An initial step in histone mRNA degradation is digestion 2–4 nt into the stem by 3′hExo and uridylation of this intermediate. The mRNA is then subsequently degraded by the exosome, with stalled intermediates being uridylated. The enzyme(s) responsible for oligouridylation of histone mRNAs have not been definitively identified. Using high-throughput sequencing of histone mRNAs and degradation intermediates, we find that knockdown of TUT7 reduces both the uridylation at the 3′ end as well as uridylation of the major degradation intermediate in the stem. In contrast, knockdown of TUT4 did not alter the uridylation pattern at the 3′ end and had a small effect on uridylation in the stem–loop during histone mRNA degradation. Knockdown of 3′hExo also altered the uridylation of histone mRNAs, suggesting that TUT7 and 3′hExo function together in trimming and uridylating histone mRNAs

    Extracting equation of state parameters from black hole-neutron star mergers. I. Nonspinning black holes

    Full text link
    The late inspiral, merger, and ringdown of a black hole-neutron star (BHNS) system can provide information about the neutron-star equation of state (EOS). Candidate EOSs can be approximated by a parametrized piecewise-polytropic EOS above nuclear density, matched to a fixed low-density EOS; and we report results from a large set of BHNS inspiral simulations that systematically vary two parameters. To within the accuracy of the simulations, we find that, apart from the neutron-star mass, a single physical parameter Lambda, describing its deformability, can be extracted from the late inspiral, merger, and ringdown waveform. This parameter is related to the radius, mass, and l=2 Love number, k_2, of the neutron star by Lambda = 2k_2 R^5/3M_{NS}^5, and it is the same parameter that determines the departure from point-particle dynamics during the early inspiral. Observations of gravitational waves from BHNS inspiral thus restrict the EOS to a surface of constant Lambda in the parameter space, thickened by the measurement error. Using various configurations of a single Advanced LIGO detector, we find that neutron stars are distinguishable from black holes of the same mass and that Lambda^{1/5} or equivalently R can be extracted to 10-40% accuracy from single events for mass ratios of Q=2 and 3 at a distance of 100 Mpc, while with the proposed Einstein Telescope, EOS parameters can be extracted to accuracy an order of magnitude better.Comment: 21 pages, 14 figures, submitted to PR

    Controlling mRNA stability and translation with the CRISPR endoribonuclease Csy4

    Get PDF
    The bacterial CRISPR endoribonuclease Csy4 has recently been described as a potential RNA processing tool. Csy4 recognizes substrate RNA through a specific 28-nt hairpin sequence and cleaves at the 3′ end of the stem. To further explore applicability in mammalian cells, we introduced this hairpin at various locations in mRNAs derived from reporter transgenes and systematically evaluated the effects of Csy4-mediated processing on transgene expression. Placing the hairpin in the 5′ UTR or immediately after the start codon resulted in efficient degradation of target mRNA by Csy4 and knockdown of transgene expression by 20- to 40-fold. When the hairpin was incorporated in the 3′ UTR prior to the poly(A) signal, the mRNA was cleaved, but only a modest decrease in transgene expression (∼2.5-fold) was observed. In the absence of a poly(A) tail, Csy4 rescued the target mRNA substrate from degradation, resulting in protein expression, which suggests that the cleaved mRNA was successfully translated. In contrast, neither catalytically inactive (H29A) nor binding-deficient (R115A/R119A) Csy4 mutants were able to exert any of the effects described above. Generation of a similar 3′ end by RNase P-mediated cleavage was unable to rescue transgene expression independent of Csy4. These results support the idea that the selective generation of the Csy4/hairpin complex resulting from cleavage of target mRNA might serve as a functional poly(A)/poly(A) binding protein (PABP) surrogate, stabilizing the mRNA and supporting translation. Although the exact mechanism(s) remain to be determined, our studies expand the potential utility of CRISPR nucleases as tools for controlling mRNA stability and translation

    Cell Cycle-Regulated Protein Abundance Changes in Synchronously Proliferating HeLa Cells Include Regulation of Pre-mRNA Splicing Proteins

    Get PDF
    Cell proliferation involves dramatic changes in DNA metabolism and cell division, and control of DNA replication, mitosis, and cytokinesis have received the greatest attention in the cell cycle field. To catalogue a wider range of cell cycle-regulated processes, we employed quantitative proteomics of synchronized HeLa cells. We quantified changes in protein abundance as cells actively progress from G1 to S phase and from S to G2 phase. We also describe a cohort of proteins whose abundance changes in response to pharmacological inhibition of the proteasome. Our analysis reveals not only the expected changes in proteins required for DNA replication and mitosis but also cell cycle-associated changes in proteins required for biological processes not known to be cell-cycle regulated. For example, many pre-mRNA alternative splicing proteins are down-regulated in S phase. Comparison of this dataset to several other proteomic datasets sheds light on global mechanisms of cell cycle phase transitions and underscores the importance of both phosphorylation and ubiquitination in cell cycle changes

    The Scientific Method as a Scaffold to Enhance Communication Skills in Chemistry

    Get PDF
    Scientific success in the field of chemistry depends upon the mastery of a wide range of soft skills, most notably scientific writing and speaking. However, training for scientific communication is typically limited at the undergraduate level, where students struggle to express themselves in a clear and logical manner. The underlying issue is deeper than basic technical skills; rather, it is a problem of students’ unawareness of a fundamental and strategic framework for writing and speaking with a purpose. The methodology has been implemented for individual mentorship and in our regional summer research program to deliver a blueprint of thought and reasoning that endows students with the confidence and skills to become more effective communicators. Our didactic process intertwines undergraduate research with the scientific method and is partitioned into six steps, referred to as “phases”, to allow for focused and deep thinking on the essential components of the scientific method. The phases are designed to challenge the student in their zone of proximal development so they learn to extract and ultimately comprehend the elements of the scientific method through focused written and oral assignments. Students then compile their newly acquired knowledge to create a compelling and logical story, using their persuasive written and oral presentations to complete a research proposal, final report, and formal 20 min presentation. We find that such an approach delivers the necessary guidance to promote the logical framework that improves writing and speaking skills. Over the past decade, we have witnessed both qualitative and quantitative gains in the students’ confidence in their abilities and skills (developed by this process), preparing them for future careers as young scientists

    Crosstalks between Myo-Inositol Metabolism, Programmed Cell Death and Basal Immunity in Arabidopsis

    Get PDF
    BACKGROUND: Although it is a crucial cellular process required for both normal development and to face stress conditions, the control of programmed cell death in plants is not fully understood. We previously reported the isolation of ATXR5 and ATXR6, two PCNA-binding proteins that could be involved in the regulation of cell cycle or cell death. A yeast two-hybrid screen using ATXR5 as bait captured AtIPS1, an enzyme which catalyses the committed step of myo-inositol (MI) biosynthesis. atips1 mutants form spontaneous lesions on leaves, raising the possibility that MI metabolism may play a role in the control of PCD in plants. In this work, we have characterised atips1 mutants to gain insight regarding the role of MI in PCD regulation. METHODOLOGY/PRINCIPAL FINDINGS: - lesion formation in atips1 mutants depends of light intensity, is due to PCD as evidenced by TUNEL labelling of nuclei, and is regulated by phytohormones such as salicylic acid - MI and galactinol are the only metabolites whose accumulation is significantly reduced in the mutant, and supplementation of the mutant with these compounds is sufficient to prevent PCD - the transcriptome profile of the mutant is extremely similar to that of lesion mimic mutants such as cpr5, or wild-type plants infected with pathogens. CONCLUSION/SIGNIFICANCE: Taken together, our results provide strong evidence for the role of MI or MI derivatives in the regulation of PCD. Interestingly, there are three isoforms of IPS in Arabidopsis, but AtIPS1 is the only one harbouring a nuclear localisation sequence, suggesting that nuclear pools of MI may play a specific role in PCD regulation and opening new research prospects regarding the role of MI in the prevention of tumorigenesis. Nevertheless, the significance of the interaction between AtIPS1 and ATXR5 remains to be established

    Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)

    Get PDF
    This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands

    Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy

    Get PDF
    The Laser Interferometer Gravitational Wave Observatory (LIGO) consists of two widely separated 4 km laser interferometers designed to detect gravitational waves from distant astrophysical sources in the frequency range from 10 Hz to 10 kHz. The first observation run of the Advanced LIGO detectors started in September 2015 and ended in January 2016. A strain sensitivity of better than 10−23/Hz−−−√ was achieved around 100 Hz. Understanding both the fundamental and the technical noise sources was critical for increasing the astrophysical strain sensitivity. The average distance at which coalescing binary black hole systems with individual masses of 30  M⊙ could be detected above a signal-to-noise ratio (SNR) of 8 was 1.3 Gpc, and the range for binary neutron star inspirals was about 75 Mpc. With respect to the initial detectors, the observable volume of the Universe increased by a factor 69 and 43, respectively. These improvements helped Advanced LIGO to detect the gravitational wave signal from the binary black hole coalescence, known as GW150914

    Effects of Data Quality Vetoes on a Search for Compact Binary Coalescences in Advanced LIGO's First Observing Run

    Get PDF
    The first observing run of Advanced LIGO spanned 4 months, from September 12, 2015 to January 19, 2016, during which gravitational waves were directly detected from two binary black hole systems, namely GW150914 and GW151226. Confident detection of gravitational waves requires an understanding of instrumental transients and artifacts that can reduce the sensitivity of a search. Studies of the quality of the detector data yield insights into the cause of instrumental artifacts and data quality vetoes specific to a search are produced to mitigate the effects of problematic data. In this paper, the systematic removal of noisy data from analysis time is shown to improve the sensitivity of searches for compact binary coalescences. The output of the PyCBC pipeline, which is a python-based code package used to search for gravitational wave signals from compact binary coalescences, is used as a metric for improvement. GW150914 was a loud enough signal that removing noisy data did not improve its significance. However, the removal of data with excess noise decreased the false alarm rate of GW151226 by more than two orders of magnitude, from 1 in 770 years to less than 1 in 186000 years.Comment: 27 pages, 13 figures, published versio
    corecore