475 research outputs found

    Oscillations of aqueous PEDOT:PSS fluid droplets and the properties of complex fluids in drop-on-demand inkjet printing

    Get PDF
    Shear-thinning aqueous poly(3,4-ethylenedioxythiophene): poly(styrene sulphonate) (PEDOT:PSS) fluids were studied under the conditions of drop-on-demand inkjet printing. Ligament retraction caused oscillation of the resulting drops, from which values of surface tension and viscosity were derived. Effective viscosities of <4 mPa s at drop oscillation frequencies of 13–33 kHz were consistent with conventional high-frequency rheometry, with only a small possible contribution from viscoelasticity with a relaxation time of about 6 μs. Strong evidence was found that the viscosity, reduced by shear-thinning in the printhead nozzle, recovered as the drop formed. The low viscosity values measured for the drops in flight were associated with the strong oscillation induced by ligament retraction, while for a weakly perturbed drop the viscosity remained high. Surface tension values in the presence of surfactant were significantly higher than the equilibrium values, and consistent with the surface age of the drops. [Graphical abstract - see article]This work was supported by EPSRC and a consortium of industrial partners (EPSRC Grant no. EP/H018913/1: Innovation in industrial inkjet technology). The high-speed camera and high power flash lamp were provided by the EPSRC Engineering Instrument Pool and we thank Adrian Walker for his help.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.jnnfm.2015.05.00

    Signal processing with Levy information

    Get PDF
    Levy processes, which have stationary independent increments, are ideal for modelling the various types of noise that can arise in communication channels. If a Levy process admits exponential moments, then there exists a parametric family of measure changes called Esscher transformations. If the parameter is replaced with an independent random variable, the true value of which represents a "message", then under the transformed measure the original Levy process takes on the character of an "information process". In this paper we develop a theory of such Levy information processes. The underlying Levy process, which we call the fiducial process, represents the "noise type". Each such noise type is capable of carrying a message of a certain specification. A number of examples are worked out in detail, including information processes of the Brownian, Poisson, gamma, variance gamma, negative binomial, inverse Gaussian, and normal inverse Gaussian type. Although in general there is no additive decomposition of information into signal and noise, one is led nevertheless for each noise type to a well-defined scheme for signal detection and enhancement relevant to a variety of practical situations.Comment: 27 pages. Version to appear in: Proc. R. Soc. London

    The History You Don’t Know, and the History You Do: The Promise of Signature Pedagogies in History Education

    Full text link
    The persistent separation of subject-matter content and pedagogical training in traditional teacher education programs has made it difficult for many beginning teachers to establish a base of knowledge they can use to develop pedagogical content knowledge as their careers unfold. While existing efforts to bridge this gap have focused on intensive collaborations between education faculty and their colleagues in disciplinary fields, or on the integration of disciplinary knowledge into teacher education coursework, work still can be done to address the problem of providing beginning teachers with the balance of deep and flexible content knowledge complemented by practical teaching maneuvers that so many of them crave. This chapter explores the possibility of addressing this gap via the development of signature pedagogies, following the lead established in many other professional fields, paying special attention to Lee Shulman’s conceptualization of the idea and its potential impact on teacher education in history

    To what extent does IQ 'explain' socio-economic variations in function?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aims of this study were to examine the extent to which higher intellectual abilities protect higher socio-economic groups from functional decline and to examine whether the contribution of intellectual abilities is independent of childhood deprivation and low birth weight and other socio-economic and developmental factors in early life.</p> <p>Methods</p> <p>The Maastricht Aging Study (MAAS) is a prospective cohort study based upon participants in a registration network of general practices in The Netherlands. Information was available on 1211 men and women, 24 – 81 years old, who were without cognitive impairment at baseline (1993 – 1995), who ever had a paid job, and who participated in the six-year follow-up. Main outcomes were longitudinal decline in important components of quality of life and successful aging, i.e., self-reported physical, affective, and cognitive functioning.</p> <p>Results</p> <p>Persons with a low occupational level at baseline showed more functional decline than persons with a high occupational level. Socio-economic and developmental factors from early life hardly contributed to the adult socio-economic differences in functional decline. Intellectual abilities, however, took into account more than one third of the association between adult socio-economic status and functional decline. The contribution of the intellectual abilities was independent of the early life factors.</p> <p>Conclusion</p> <p>Rather than developmental and socio-economic characteristics of early life, the findings substantiate the importance of intellectual abilities for functional decline and their contribution – as potential, but neglected confounders – to socio-economic differences in functioning, successful aging, and quality of life. The higher intellectual abilities in the higher socio-economic status groups may also underlie the higher prevalences of mastery, self-efficacy and efficient coping styles in these groups.</p

    Preparation and Characterization of Covalently Binding of Rat Anti-human IgG Monolayer on Thiol-Modified Gold Surface

    Get PDF
    The 16-mercaptohexadecanoic acid (MHA) film and rat anti-human IgG protein monolayer were fabricated on gold substrates using self-assembled monolayer (SAM) method. The surface properties of the bare gold substrate, the MHA film and the protein monolayer were characterized by contact angle measurements, atomic force microscopy (AFM), grazing incidence X-ray diffraction (GIXRD) method and X-ray photoelectron spectroscopy, respectively. The contact angles of the MHA film and the protein monolayer were 18° and 12°, respectively, all being hydrophilic. AFM images show dissimilar topographic nanostructures between different surfaces, and the thickness of the MHA film and the protein monolayer was estimated to be 1.51 and 5.53 nm, respectively. The GIXRD 2θ degrees of the MHA film and the protein monolayer ranged from 0° to 15°, significantly smaller than that of the bare gold surface, but the MHA film and the protein monolayer displayed very different profiles and distributions of their diffraction peaks. Moreover, the spectra of binding energy measured from these different surfaces could be well fitted with either Au4f, S2p or N1s, respectively. Taken together, these results indicate that MHA film and protein monolayer were successfully formed with homogeneous surfaces, and thus demonstrate that the SAM method is a reliable technique for fabricating protein monolayer

    Measuring student attitude and knowledge in technology-rich biology classrooms

    Get PDF
    The use of technology in schools is now ubiquitous, but the effectiveness on the learning environment has mixed results. This paper describes the development and validation of an instrument to measure students’ attitudes toward and knowledge of technology with the aim of investigating any differences based on gender after a course where the science department made use of technology as an integral part of teaching biology. In this study, conducted in one school in the state of New York, in the United States of America, the Students’ Attitudes Toward and Knowledge of Technology Questionnaire was administered to nearly 700 high school science students. A principal component and principal factor analysis resulted in new scales from the validation of the instrument that demonstrated high reliabilities. There were statistically significant gender differences in all the scales of the questionnaire in favor of males

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    corecore