552 research outputs found

    Epitope Mapping of HIV-Specific CD8+ T cells in a Cohort Dominated by Clade A1 Infection

    Get PDF
    CD8+ T cell responses are often detected at large magnitudes in HIV-infected subjects, and eliciting these responses is the central aim of many HIV-1 vaccine strategies. Population differences in CD8+ T cell epitope specificity will need to be understood if vaccines are to be effective in multiple geographic regions.In a large Kenyan cohort, we compared responsive CD8+ T cell HIV-1 Env overlapping peptides (OLPs) to Best Defined Epitopes (BDEs), many of which have been defined in clade B infection. While the majority of BDEs (69%) were recognized in this population, nearly half of responsive OLPs (47%) did not contain described epitopes. Recognition frequencies of BDEs were inversely correlated to epitopic sequence differences between clade A1 and BDE (P = 0.019), and positively selected residues were more frequent in "new" OLPs (without BDEs). We assessed the impact of HLA and TAP binding on epitope recognition frequencies, focusing on predicted and actual epitopes in the HLA B7 supertype.Although many previously described CD8 epitopes were recognized, several novel CD8 epitopes were defined in this population, implying that epitope mapping efforts have not been completely exhausted. Expansion of these studies will be critical to understand population differences in CD8 epitope recognition

    Hypoxia Alters Cell Cycle Regulatory Protein Expression and Induces Premature Maturation of Oligodendrocyte Precursor Cells

    Get PDF
    Periventricular white matter injury (PWMI) is a common form of brain injury sustained by preterm infants. A major factor that predisposes to PWMI is hypoxia. Because oligodendrocytes (OLs) are responsible for myelination of axons, abnormal OL development or function may affect brain myelination. At present our understanding of the influences of hypoxia on OL development is limited. To examine isolated effects of hypoxia on OLs, we examined the influences of hypoxia on OL development in vitro.Cultures of oligodendrocyte precursor cells (OPCs) were prepared from mixed glial cultures and were 99% pure. OPCs were maintained at 21% O(2) or hypoxia (1% or 4% O(2)) for up to 7 days. We observed that 1% O(2) lead to an increase in the proportion of myelin basic protein (MBP)-positive OLs after 1 week in culture, and a decrease in the proportion of platelet-derived growth factor receptor alpha (PDGFRalpha)-positive cells suggesting premature OL maturation. Increased expression of the cell cycle regulatory proteins p27(Kip1) and phospho-cdc2, which play a role in OL differentiation, was seen as well.These results show that hypoxia interferes with the normal process of OL differentiation by inducing premature OPC maturation

    An experimental study of Quartets MaxCut and other supertree methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Supertree methods represent one of the major ways by which the Tree of Life can be estimated, but despite many recent algorithmic innovations, matrix representation with parsimony (MRP) remains the main algorithmic supertree method.</p> <p>Results</p> <p>We evaluated the performance of several supertree methods based upon the Quartets MaxCut (QMC) method of Snir and Rao and showed that two of these methods usually outperform MRP and five other supertree methods that we studied, under many realistic model conditions. However, the QMC-based methods have scalability issues that may limit their utility on large datasets. We also observed that taxon sampling impacted supertree accuracy, with poor results obtained when all of the source trees were only sparsely sampled. Finally, we showed that the popular optimality criterion of minimizing the total topological distance of the supertree to the source trees is only weakly correlated with supertree topological accuracy. Therefore evaluating supertree methods on biological datasets is problematic.</p> <p>Conclusions</p> <p>Our results show that supertree methods that improve upon MRP are possible, and that an effort should be made to produce scalable and robust implementations of the most accurate supertree methods. Also, because topological accuracy depends upon taxon sampling strategies, attempts to construct very large phylogenetic trees using supertree methods should consider the selection of source tree datasets, as well as supertree methods. Finally, since supertree topological error is only weakly correlated with the supertree's topological distance to its source trees, development and testing of supertree methods presents methodological challenges.</p

    Chronic kidney disease increases cardiovascular unfavourable outcomes in outpatients with heart failure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic heart failure (CHF) has a high morbidity and mortality. Chronic kidney disease (CKD) has consistently been found to be an independent risk factor for unfavorable cardiovascular (CV) outcomes. Early intervention on CKD reduces the progression of CHF, hospitalizations and mortality, yet there are very few studies about CKD as a risk factor in the early stages of CHF. The aims of our study were to assess the prevalence and the prognostic importance of CKD in patients with systolic CHF stages B and C.</p> <p>Methods</p> <p>This is a prospective cohort study, dealing with prognostic markers for CV endpoints in patients with systolic CHF (ejection fraction ≀ 45%).</p> <p>Results</p> <p>CKD was defined as estimated glomerular filtration rate <60 mL/min/1.73 m<sup>2 </sup>and CV endpoints as death or hospitalization due to CHF, in 12 months follow-up. Eighty three patients were studied, the mean age was 62.7 ± 12 years, and 56.6% were female. CKD was diagnosed in 49.4% of the patients, 33% of patients with CHF stage B and 67% in the stage C. Cardiovascular endpoints were observed in 26.5% of the patients. When the sample was stratified into stages B and C of CHF, the occurrence of CKD was associated with 100% and 64.7%, respectively, of unfavorable CV outcomes. After adjustments for all other prognostic factors at baseline, it was observed that the diagnosis of CKD increased in 3.6 times the possibility of CV outcomes (CI 95% 1.04-12.67, p = 0.04), whereas higher ejection fraction (R = 0.925, IC 95% 0.862-0.942, p = 0.03) and serum sodium (R = 0.807, IC 95% 0.862-0.992, p = 0.03) were protective.</p> <p>Conclusion</p> <p>In this cohort of patients with CHF stages B and C, CKD was prevalent and independently associated with increased risk of hospitalization and death secondary to cardiac decompensation, especially in asymptomatic patients.</p

    Homologous Recombination Mediates Functional Recovery of Dysferlin Deficiency following AAV5 Gene Transfer

    Get PDF
    The dysferlinopathies comprise a group of untreatable muscle disorders including limb girdle muscular dystrophy type 2B, Miyoshi myopathy, distal anterior compartment syndrome, and rigid spine syndrome. As with other forms of muscular dystrophy, adeno-associated virus (AAV) gene transfer is a particularly auspicious treatment strategy, however the size of the DYSF cDNA (6.5 kb) negates packaging into traditional AAV serotypes known to express well in muscle (i.e. rAAV1, 2, 6, 8, 9). Potential advantages of a full cDNA versus a mini-gene include: maintaining structural-functional protein domains, evading protein misfolding, and avoiding novel epitopes that could be immunogenic. AAV5 has demonstrated unique plasticity with regards to packaging capacity and recombination of virions containing homologous regions of cDNA inserts has been implicated in the generation of full-length transcripts. Herein we show for the first time in vivo that homologous recombination following AAV5.DYSF gene transfer leads to the production of full length transcript and protein. Moreover, gene transfer of full-length dysferlin protein in dysferlin deficient mice resulted in expression levels sufficient to correct functional deficits in the diaphragm and importantly in skeletal muscle membrane repair. Intravascular regional gene transfer through the femoral artery produced high levels of transduction and enabled targeting of specific muscle groups affected by the dysferlinopathies setting the stage for potential translation to clinical trials. We provide proof of principle that AAV5 mediated delivery of dysferlin is a highly promising strategy for treatment of dysferlinopathies and has far-reaching implications for the therapeutic delivery of other large genes

    A path forward in the debate over health impacts of endocrine disrupting chemicals

    Get PDF
    Several recent publications reflect debate on the issue of “endocrine disrupting chemicals” (EDCs), indicating that two seemingly mutually exclusive perspectives are being articulated separately and independently. Considering this, a group of scientists with expertise in basic science, medicine and risk assessment reviewed the various aspects of the debate to identify the most significant areas of dispute and to propose a path forward. We identified four areas of debate. The first is about the definitions for terms such as “endocrine disrupting chemical”, “adverse effects”, and “endocrine system”. The second is focused on elements of hormone action including “potency”, “endpoints”, “timing”, “dose” and “thresholds”. The third addresses the information needed to establish sufficient evidence of harm. Finally, the fourth focuses on the need to develop and the characteristics of transparent, systematic methods to review the EDC literature. Herein we identify areas of general consensus and propose resolutions for these four areas that would allow the field to move beyond the current and, in our opinion, ineffective debate

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT

    Reach and grasp by people with tetraplegia using a neurally controlled robotic arm

    Get PDF
    Paralysis following spinal cord injury (SCI), brainstem stroke, amyotrophic lateral sclerosis (ALS) and other disorders can disconnect the brain from the body, eliminating the ability to carry out volitional movements. A neural interface system (NIS)1–5 could restore mobility and independence for people with paralysis by translating neuronal activity directly into control signals for assistive devices. We have previously shown that people with longstanding tetraplegia can use an NIS to move and click a computer cursor and to control physical devices6–8. Able-bodied monkeys have used an NIS to control a robotic arm9, but it is unknown whether people with profound upper extremity paralysis or limb loss could use cortical neuronal ensemble signals to direct useful arm actions. Here, we demonstrate the ability of two people with long-standing tetraplegia to use NIS-based control of a robotic arm to perform three-dimensional reach and grasp movements. Participants controlled the arm over a broad space without explicit training, using signals decoded from a small, local population of motor cortex (MI) neurons recorded from a 96-channel microelectrode array. One of the study participants, implanted with the sensor five years earlier, also used a robotic arm to drink coffee from a bottle. While robotic reach and grasp actions were not as fast or accurate as those of an able-bodied person, our results demonstrate the feasibility for people with tetraplegia, years after CNS injury, to recreate useful multidimensional control of complex devices directly from a small sample of neural signals

    Promotion of plasma membrane repair by vitamin E

    Get PDF
    Severe vitamin E deficiency results in lethal myopathy in animal models. Membrane repair is an important myocyte response to plasma membrane disruption injury as when repair fails, myocytes die and muscular dystrophy ensues. Here we show that supplementation of cultured cells with α-tocopherol, the most common form of vitamin E, promotes plasma membrane repair. Conversely, in the absence of α-tocopherol supplementation, exposure of cultured cells to an oxidant challenge strikingly inhibits repair. Comparative measurements reveal that, to promote repair, an anti-oxidant must associate with membranes, as α-tocopherol does, or be capable of α-tocopherol regeneration. Finally, we show that myocytes in intact muscle cannot repair membranes when exposed to an oxidant challenge, but show enhanced repair when supplemented with vitamin E. Our work suggests a novel biological function for vitamin E in promoting myocyte plasma membrane repair. We propose that this function is essential for maintenance of skeletal muscle homeostasis
    • 

    corecore