329 research outputs found

    Cycle-centrality in complex networks

    Full text link
    Networks are versatile representations of the interactions between entities in complex systems. Cycles on such networks represent feedback processes which play a central role in system dynamics. In this work, we introduce a measure of the importance of any individual cycle, as the fraction of the total information flow of the network passing through the cycle. This measure is computationally cheap, numerically well-conditioned, induces a centrality measure on arbitrary subgraphs and reduces to the eigenvector centrality on vertices. We demonstrate that this measure accurately reflects the impact of events on strategic ensembles of economic sectors, notably in the US economy. As a second example, we show that in the protein-interaction network of the plant Arabidopsis thaliana, a model based on cycle-centrality better accounts for pathogen activity than the state-of-art one. This translates into pathogen-targeted-proteins being concentrated in a small number of triads with high cycle-centrality. Algorithms for computing the centrality of cycles and subgraphs are available for download

    Lung adenocarcinoma originates from retrovirus infection of proliferating type 2 pneumocytes during pulmonary post-natal development or tissue repair

    Get PDF
    Jaagsiekte sheep retrovirus (JSRV) is a unique oncogenic virus with distinctive biological properties. JSRV is the only virus causing a naturally occurring lung cancer (ovine pulmonary adenocarcinoma, OPA) and possessing a major structural protein that functions as a dominant oncoprotein. Lung cancer is the major cause of death among cancer patients. OPA can be an extremely useful animal model in order to identify the cells originating lung adenocarcinoma and to study the early events of pulmonary carcinogenesis. In this study, we demonstrated that lung adenocarcinoma in sheep originates from infection and transformation of proliferating type 2 pneumocytes (termed here lung alveolar proliferating cells, LAPCs). We excluded that OPA originates from a bronchioalveolar stem cell, or from mature post-mitotic type 2 pneumocytes or from either proliferating or non-proliferating Clara cells. We show that young animals possess abundant LAPCs and are highly susceptible to JSRV infection and transformation. On the contrary, healthy adult sheep, which are normally resistant to experimental OPA induction, exhibit a relatively low number of LAPCs and are resistant to JSRV infection of the respiratory epithelium. Importantly, induction of lung injury increased dramatically the number of LAPCs in adult sheep and rendered these animals fully susceptible to JSRV infection and transformation. Furthermore, we show that JSRV preferentially infects actively dividing cell in vitro. Overall, our study provides unique insights into pulmonary biology and carcinogenesis and suggests that JSRV and its host have reached an evolutionary equilibrium in which productive infection (and transformation) can occur only in cells that are scarce for most of the lifespan of the sheep. Our data also indicate that, at least in this model, inflammation can predispose to retroviral infection and cancer

    Sensitivity and specificity of monoclonal and polyclonal immunohistochemical staining for West Nile virus in various organs from American crows (Corvus brachyrhynchos)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Based on results of earlier studies, brain, heart and kidney are most commonly used for West Nile virus (WNV) detection in avian species. Both monoclonal and polyclonal antibodies have been used for the immunohistochemical diagnosis of WNV in these species. Thus far, no studies have been performed to compare the sensitivity and specificity of monoclonal and polyclonal antibodies in detecting WNV in American crows (<it>Corvus brachyrhynchos</it>). Our objectives were to determine 1) the comparative sensitivities of monoclonal and polyclonal antibodies for immunohistochemical (IHC) diagnosis of WNV infection in free-ranging American crows, 2) which organ(s) is/are most suitable for IHC-based diagnosis of WNV, and 3) how real-time RT-PCR on RNA extracted from formalin-fixed paraffin-embedded tissues compared to IHC for the diagnosis of WNV infection.</p> <p>Methods</p> <p>Various combinations, depending on tissue availability, of sections of heart, kidney, brain, liver, lung, spleen, and small intestine from 85 free-ranging American crows were stained using a rabbit-polyclonal anti-WNV antibody as well as a monoclonal antibody directed against an epitope on Domain III of the E protein of WNV. The staining intensity and the extent of staining were determined for each organ using both antibodies. Real-time RT-PCR on formalin-fixed paraffin-embedded tissues from all 85 crows was performed.</p> <p>Results</p> <p>Forty-three crows were IHC-positive in at least one of the examined organs with the polyclonal antibody, and of these, only 31 were positive when IHC was performed with the monoclonal antibody. Real-time RT-PCR amplified WNV-specific sequences from tissue extracts of the same 43 crows that were IHC-positive using the polyclonal antibody. All other 42 crows tested negative for WNV with real-time PCR and IHC staining. Both antibodies had a test specificity of 100% when compared to PCR results. The test sensitivity of monoclonal antibody-based IHC staining was only 72%, compared to 100% when using the polyclonal antibody.</p> <p>Conclusion</p> <p>The most sensitive, readily identified, positively staining organs for IHC are the kidney, liver, lung, spleen, and small intestine. Real-time RT-PCR and IHC staining using a polyclonal antibody on sections of these tissues are highly sensitive diagnostic tests for the detection of WNV in formalin-fixed tissues of American crows.</p

    Comparative Gene Expression Profiling of P. falciparum Malaria Parasites Exposed to Three Different Histone Deacetylase Inhibitors

    Get PDF
    Histone deacetylase (HDAC) inhibitors are being intensively pursued as potential new drugs for a range of diseases, including malaria. HDAC inhibitors are also important tools for the study of epigenetic mechanisms, transcriptional control, and other important cellular processes. In this study the effects of three structurally related antimalarial HDAC inhibitors on P. falciparum malaria parasite gene expression were compared. The three hydroxamate-based compounds, trichostatin A (TSA), suberoylanilide hydroxamic acid (SAHA; Vorinostat®) and a 2-aminosuberic acid derivative (2-ASA-9), all caused profound transcriptional effects, with ∼2–21% of genes having >2-fold altered expression following 2 h exposure to the compounds. Only two genes, alpha tubulin II and a hydrolase, were up-regulated by all three compounds after 2 h exposure in all biological replicates examined. The transcriptional changes observed after 2 h exposure to HDAC inhibitors were found to be largely transitory, with only 1–5% of genes being regulated after removing the compounds and culturing for a further 2 h. Despite some structural similarity, the three inhibitors caused quite diverse transcriptional effects, possibly reflecting subtle differences in mode of action or cellular distribution. This dataset represents an important contribution to our understanding of how HDAC inhibitors act on malaria parasites and identifies alpha tubulin II as a potential transcriptional marker of HDAC inhibition in malaria parasites that may be able to be exploited for future development of HDAC inhibitors as new antimalarial agents

    Maternal Malaria Induces a Procoagulant and Antifibrinolytic State That Is Embryotoxic but Responsive to Anticoagulant Therapy

    Get PDF
    Low birth weight and fetal loss are commonly attributed to malaria in endemic areas, but the cellular and molecular mechanisms that underlie these poor birth outcomes are incompletely understood. Increasing evidence suggests that dysregulated hemostasis is important in malaria pathogenesis, but its role in placental malaria (PM), characterized by intervillous sequestration of Plasmodium falciparum, proinflammatory responses, and excessive fibrin deposition is not known. To address this question, markers of coagulation and fibrinolysis were assessed in placentae from malaria-exposed primigravid women. PM was associated with significantly elevated placental monocyte and proinflammatory marker levels, enhanced perivillous fibrin deposition, and increased markers of activated coagulation and suppressed fibrinolysis in placental plasma. Submicroscopic PM was not proinflammatory but tended to be procoagulant and antifibrinolytic. Birth weight trended downward in association with placental parasitemia and high fibrin score. To directly assess the importance of coagulation in malaria-induced compromise of pregnancy, Plasmodium chabaudi AS-infected pregnant C57BL/6 mice were treated with the anticoagulant, low molecular weight heparin. Treatment rescued pregnancy at midgestation, with substantially decreased rates of active abortion and reduced placental and embryonic hemorrhage and necrosis relative to untreated animals. Together, the results suggest that dysregulated hemostasis may represent a novel therapeutic target in malaria-compromised pregnancies

    Moderate exercise and chronic stress produce counteractive effects on different areas of the brain by acting through various neurotransmitter receptor subtypes: A hypothesis

    Get PDF
    BACKGROUND: Regular, "moderate", physical exercise is an established non-pharmacological form of treatment for depressive disorders. Brain lateralization has a significant role in the progress of depression. External stimuli such as various stressors or exercise influence the higher functions of the brain (cognition and affect). These effects often do not follow a linear course. Therefore, nonlinear dynamics seem best suited for modeling many of the phenomena, and putative global pathways in the brain, attributable to such external influences. HYPOTHESIS: The general hypothesis presented here considers only the nonlinear aspects of the effects produced by "moderate" exercise and "chronic" stressors, but does not preclude the possibility of linear responses. In reality, both linear and nonlinear mechanisms may be involved in the final outcomes. The well-known neurotransmitters serotonin (5-HT), dopamine (D) and norepinephrine (NE) all have various receptor subtypes. The article hypothesizes that 'Stress' increases the activity/concentration of some particular subtypes of receptors (designated nt(s)) for each of the known (and unknown) neurotransmitters in the right anterior (RA) and left posterior (LP) regions (cortical and subcortical) of the brain, and has the converse effects on a different set of receptor subtypes (designated nt(h)). In contrast, 'Exercise' increases nt(h )activity/concentration and/or reduces nt(s )activity/concentration in the LA and RP areas of the brain. These effects may be initiated by the activation of Brain Derived Neurotrophic Factor (BDNF) (among others) in exercise and its suppression in stress. CONCLUSION: On the basis of this hypothesis, a better understanding of brain neurodynamics might be achieved by considering the oscillations caused by single neurotransmitters acting on their different receptor subtypes, and the temporal pattern of recruitment of these subtypes. Further, appropriately designed and planned experiments will not only corroborate such theoretical models, but also shed more light on the underlying brain dynamics

    Changes in preterm birth and stillbirth during COVID-19 lockdowns in 26 countries

    Get PDF
    Preterm birth (PTB) is the leading cause of infant mortality worldwide. Changes in PTB rates, ranging from −90% to +30%, were reported in many countries following early COVID-19 pandemic response measures (‘lockdowns’). It is unclear whether this variation reflects real differences in lockdown impacts, or perhaps differences in stillbirth rates and/or study designs. Here we present interrupted time series and meta-analyses using harmonized data from 52 million births in 26 countries, 18 of which had representative population-based data, with overall PTB rates ranging from 6% to 12% and stillbirth ranging from 2.5 to 10.5 per 1,000 births. We show small reductions in PTB in the first (odds ratio 0.96, 95% confidence interval 0.95–0.98, P value <0.0001), second (0.96, 0.92–0.99, 0.03) and third (0.97, 0.94–1.00, 0.09) months of lockdown, but not in the fourth month of lockdown (0.99, 0.96–1.01, 0.34), although there were some between-country differences after the first month. For high-income countries in this study, we did not observe an association between lockdown and stillbirths in the second (1.00, 0.88–1.14, 0.98), third (0.99, 0.88–1.12, 0.89) and fourth (1.01, 0.87–1.18, 0.86) months of lockdown, although we have imprecise estimates due to stillbirths being a relatively rare event. We did, however, find evidence of increased risk of stillbirth in the first month of lockdown in high-income countries (1.14, 1.02–1.29, 0.02) and, in Brazil, we found evidence for an association between lockdown and stillbirth in the second (1.09, 1.03–1.15, 0.002), third (1.10, 1.03–1.17, 0.003) and fourth (1.12, 1.05–1.19, <0.001) months of lockdown. With an estimated 14.8 million PTB annually worldwide, the modest reductions observed during early pandemic lockdowns translate into large numbers of PTB averted globally and warrant further research into causal pathways

    Search for High-Mass Resonances Decaying to τν in pp Collisions at √s=13 TeV with the ATLAS Detector

    Get PDF
    A search for high-mass resonances decaying to τν using proton-proton collisions at √s=13 TeV produced by the Large Hadron Collider is presented. Only τ-lepton decays with hadrons in the final state are considered. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb−1. No statistically significant excess above the standard model expectation is observed; model-independent upper limits are set on the visible τν production cross section. Heavy W′ bosons with masses less than 3.7 TeV in the sequential standard model and masses less than 2.2–3.8 TeV depending on the coupling in the nonuniversal G(221) model are excluded at the 95% credibility level
    corecore