493 research outputs found
On the combination of omics data for prediction of binary outcomes
Enrichment of predictive models with new biomolecular markers is an important
task in high-dimensional omic applications. Increasingly, clinical studies
include several sets of such omics markers available for each patient,
measuring different levels of biological variation. As a result, one of the
main challenges in predictive research is the integration of different sources
of omic biomarkers for the prediction of health traits. We review several
approaches for the combination of omic markers in the context of binary outcome
prediction, all based on double cross-validation and regularized regression
models. We evaluate their performance in terms of calibration and
discrimination and we compare their performance with respect to single-omic
source predictions. We illustrate the methods through the analysis of two real
datasets. On the one hand, we consider the combination of two fractions of
proteomic mass spectrometry for the calibration of a diagnostic rule for the
detection of early-stage breast cancer. On the other hand, we consider
transcriptomics and metabolomics as predictors of obesity using data from the
Dietary, Lifestyle, and Genetic determinants of Obesity and Metabolic syndrome
(DILGOM) study, a population-based cohort, from Finland
On Virtual Displacement and Virtual Work in Lagrangian Dynamics
The confusion and ambiguity encountered by students, in understanding virtual
displacement and virtual work, is discussed in this article. A definition of
virtual displacement is presented that allows one to express them explicitly
for holonomic (velocity independent), non-holonomic (velocity dependent),
scleronomous (time independent) and rheonomous (time dependent) constraints. It
is observed that for holonomic, scleronomous constraints, the virtual
displacements are the displacements allowed by the constraints. However, this
is not so for a general class of constraints. For simple physical systems, it
is shown that, the work done by the constraint forces on virtual displacements
is zero. This motivates Lagrange's extension of d'Alembert's principle to
system of particles in constrained motion. However a similar zero work
principle does not hold for the allowed displacements. It is also demonstrated
that d'Alembert's principle of zero virtual work is necessary for the
solvability of a constrained mechanical problem. We identify this special class
of constraints, physically realized and solvable, as {\it the ideal
constraints}. The concept of virtual displacement and the principle of zero
virtual work by constraint forces are central to both Lagrange's method of
undetermined multipliers, and Lagrange's equations in generalized coordinates.Comment: 12 pages, 10 figures. This article is based on an earlier article
physics/0410123. It includes new figures, equations and logical conten
Spinning dust emission: the effect of rotation around a non-principal axis
We investigate the rotational emission from dust grains that rotate around
non- principal axes. We argue that in many phases of the interstellar medium,
the smallest grains, which dominate spinning dust emission, are likely to have
their nutation state (orientation of principal axes relative to the angular
momentum vector) randomized during each thermal spike. We recompute the
excitation and damping rates associated with rotational emission from the grain
permanent dipole, grain-plasma interactions, infrared photon emission, and
collisions. The resulting spinning dust spectra gener- ally show a shift toward
higher emissivities and peak frequencies relative to previous calculations.Comment: Version accepted for publication in MNRAS. The derivation of the
emission spectrum was clarified. The companion code, SPDUST.2, can be
downloaded from http://www.tapir.caltech.edu/~yacine/spdust/spdust.htm
Distribution of Dendritic Cells in Normal Human Salivary Glands
Dendritic cells (DC) are believed to contribute to development of autoimmune sialadenitis, but little is known about their distribution in normal salivary glands. In this study, DC were identified and their distribution was determined in normal human parotid and submandibular glands. For light microscopy, salivary gland sections were stained with H&E or immunocytochemically using antibodies to DC markers. Transmission electron microscopy (TEM) was used to evaluate the ultrastructural characteristics of DC. In H&E sections, elongated, irregularly shaped nuclei were occasionally seen in the striated and excretory duct epithelium. Immunolabeling with anti-HLA-DR, anti-CD11c and anti-S100 revealed DC with numerous processes extending between ductal epithelial cells, often close to the lumen. Morphometric analyses indicated that HLA-DR-positive DC occupied approximately 4–11% of the duct wall volume. Similar reactive cells were present in acini, intercalated ducts and interstitial tissues. TEM observations revealed cells with indented nuclei containing dense chromatin, pale cytoplasm with few organelles, and lacking junctional attachments to adjacent cells. These results indicate that DC are abundant constituents of normal human salivary glands. Their location within ductal and acinar epithelium suggests a role in responding to foreign antigens and/or maintaining immunological tolerance to salivary proteins
Planck Intermediate Results II: Comparison of Sunyaev-Zeldovich measurements from Planck and from the Arcminute Microkelvin Imager for 11 galaxy clusters
A comparison is presented of Sunyaev-Zeldovich measurements for 11 galaxy
clusters as obtained by Planck and by the ground-based interferometer, the
Arcminute Microkelvin Imager. Assuming a universal spherically-symmetric
Generalised Navarro, Frenk & White (GNFW) model for the cluster gas pressure
profile, we jointly constrain the integrated Compton-Y parameter (Y_500) and
the scale radius (theta_500) of each cluster. Our resulting constraints in the
Y_500-theta_500 2D parameter space derived from the two instruments overlap
significantly for eight of the clusters, although, overall, there is a tendency
for AMI to find the Sunyaev-Zeldovich signal to be smaller in angular size and
fainter than Planck. Significant discrepancies exist for the three remaining
clusters in the sample, namely A1413, A1914, and the newly-discovered Planck
cluster PLCKESZ G139.59+24.18. The robustness of the analysis of both the
Planck and AMI data is demonstrated through the use of detailed simulations,
which also discount confusion from residual point (radio) sources and from
diffuse astrophysical foregrounds as possible explanations for the
discrepancies found. For a subset of our cluster sample, we have investigated
the dependence of our results on the assumed pressure profile by repeating the
analysis adopting the best-fitting GNFW profile shape which best matches X-ray
observations. Adopting the best-fitting profile shape from the X-ray data does
not, in general, resolve the discrepancies found in this subset of five
clusters. Though based on a small sample, our results suggest that the adopted
GNFW model may not be sufficiently flexible to describe clusters universally.Comment: update to metadata author list onl
Cluster Lenses
Clusters of galaxies are the most recently assembled, massive, bound
structures in the Universe. As predicted by General Relativity, given their
masses, clusters strongly deform space-time in their vicinity. Clusters act as
some of the most powerful gravitational lenses in the Universe. Light rays
traversing through clusters from distant sources are hence deflected, and the
resulting images of these distant objects therefore appear distorted and
magnified. Lensing by clusters occurs in two regimes, each with unique
observational signatures. The strong lensing regime is characterized by effects
readily seen by eye, namely, the production of giant arcs, multiple-images, and
arclets. The weak lensing regime is characterized by small deformations in the
shapes of background galaxies only detectable statistically. Cluster lenses
have been exploited successfully to address several important current questions
in cosmology: (i) the study of the lens(es) - understanding cluster mass
distributions and issues pertaining to cluster formation and evolution, as well
as constraining the nature of dark matter; (ii) the study of the lensed objects
- probing the properties of the background lensed galaxy population - which is
statistically at higher redshifts and of lower intrinsic luminosity thus
enabling the probing of galaxy formation at the earliest times right up to the
Dark Ages; and (iii) the study of the geometry of the Universe - as the
strength of lensing depends on the ratios of angular diameter distances between
the lens, source and observer, lens deflections are sensitive to the value of
cosmological parameters and offer a powerful geometric tool to probe Dark
Energy. In this review, we present the basics of cluster lensing and provide a
current status report of the field.Comment: About 120 pages - Published in Open Access at:
http://www.springerlink.com/content/j183018170485723/ . arXiv admin note:
text overlap with arXiv:astro-ph/0504478 and arXiv:1003.3674 by other author
The circadian regulator Bmal1 in joint mesenchymal cells regulates both joint development and inflammatory arthritis
Background The circadian clock plays a crucial role in regulating physiology and is important for maintaining immune homeostasis and responses to inflammatory stimuli. Inflammatory arthritis often shows diurnal variation in disease symptoms and disease markers, and it is now established that cellular clocks regulate joint inflammation. The clock gene Bmal1 is critical for maintenance of 24-h rhythms and plays a key role in regulating immune responses, as well as in aging-related processes. Fibroblast-like synoviocytes (FLS) are circadian rhythmic joint mesenchymal cells which are important for maintenance of joint health and play a crucial role in the development of inflammatory arthritis. The aim of this study was to investigate the importance of the joint mesenchymal cell circadian clock in health and disease. Methods Mice were generated which lack Bmal1 in Col6a1-expressing cells, targeting mesenchymal cells in the ankle joints. Joints of these animals were assessed by X-ray imaging, whole-mount staining and histology, and the composition of the synovium was assessed by flow cytometry. Arthritis was induced using collagen antibodies. Results Bmal1 deletion in joint mesenchymal cells rendered the FLS and articular cartilage cells arrhythmic. Targeted mice exhibited significant changes in the architecture of the joints, including chondroid metaplasia (suggesting a switch of connective tissue stem cells towards a chondroid phenotype), reductions in resident synovial macrophages and changes in the basal pro-inflammatory activity of FLS. Loss of Bmal1 in FLS rendered these resident immune cells more pro-inflammatory in response to challenge, leading to increased paw swelling, localised infiltration of mononuclear cells and enhanced cytokine production in a model of arthritis. Conclusions This study demonstrates the importance of Bmal1 in joint mesenchymal cells in regulating FLS and chondrocyte development. Additionally, we have identified a role for this core clock component for restraining local responses to inflammation and highlight a role for the circadian clock in regulating inflammatory arthritis
Quantifying the effect of uncertainty in input parameters in a simplified bidomain model of partial thickness ischaemia
Reduced blood flow in the coronary arteries can lead to damaged heart tissue (myocardial ischaemia). Although one method for detecting myocardial ischaemia involves changes in the ST segment of the electrocardiogram, the relationship between these changes and subendocardial ischaemia is not fully understood. In this study, we modelled ST-segment epicardial potentials in a slab model of cardiac ventricular tissue, with a central ischaemic region, using the bidomain model, which considers conduction longitudinal, transverse and normal to the cardiac fibres. We systematically quantified the effect of uncertainty on the input parameters, fibre rotation angle, ischaemic depth, blood conductivity and six bidomain conductivities, on outputs that characterise the epicardial potential distribution. We found that three typical types of epicardial potential distributions (one minimum over the central ischaemic region, a tripole of minima, and two minima flanking a central maximum) could all occur for a wide range of ischaemic depths. In addition, the positions of the minima were affected by both the fibre rotation angle and the ischaemic depth, but not by changes in the conductivity values. We also showed that the magnitude of ST depression is affected only by changes in the longitudinal and normal conductivities, but not by the transverse conductivities
Urban Biodiversity and Landscape Ecology: Patterns, Processes and Planning
Effective planning for biodiversity in cities and towns is increasingly important as urban areas and their human populations grow, both to achieve conservation goals and because ecological communities support services on which humans depend. Landscape ecology provides important frameworks for understanding and conserving urban biodiversity both within cities and considering whole cities in their regional context, and has played an important role in the development of a substantial and expanding body of knowledge about urban landscapes and communities. Characteristics of the whole city including size, overall amount of green space, age and regional context are important considerations for understanding and planning for biotic assemblages at the scale of entire cities, but have received relatively little research attention. Studies of biodiversity within cities are more abundant and show that longstanding principles regarding how patch size, configuration and composition influence biodiversity apply to urban areas as they do in other habitats. However, the fine spatial scales at which urban areas are fragmented and the altered temporal dynamics compared to non-urban areas indicate a need to apply hierarchical multi-scalar landscape ecology models to urban environments. Transferring results from landscape-scale urban biodiversity research into planning remains challenging, not least because of the requirements for urban green space to provide multiple functions. An increasing array of tools is available to meet this challenge and increasingly requires ecologists to work with planners to address biodiversity challenges. Biodiversity conservation and enhancement is just one strand in urban planning, but is increasingly important in a rapidly urbanising world
Connectivity of larval stages of sedentary marine communities between hard substrates and offshore structures in the North Sea
Man-made structures including rigs, pipelines, cables, renewable energy devices, and ship wrecks, offer hard substrate in the largely soft-sediment environment of the North Sea. These structures become colonised by sedentary organisms and non-migratory reef fish, and form local ecosystems that attract larger predators including seals, birds, and fish. It is possible that these structures form a system of interconnected reef environments through the planktonic dispersal of the pelagic stages of organisms by ocean currents. Changes to the overall arrangement of hard substrate areas through removal or addition of individual man-made structures will affect the interconnectivity and could impact on the ecosystem. Here, we assessed the connectivity of sectors with oil and gas structures, wind farms, wrecks, and natural hard substrate, using a model that simulates the drift of planktonic stages of seven organisms with sedentary adult stages associated with hard substrate, applied to the period 2001–2010. Connectivity was assessed using a classification system designed to address the function of sectors in the network. Results showed a relatively stable overall spatial distribution of sector function but with distinct variations between species and years. The results are discussed in the context of decommissioning of oil and gas infrastructure in the North Sea
- …
