109 research outputs found

    P-Stereogenic Phosphines for the Stabilisation of Metal Nanoparticles. A Surface State Study

    Get PDF
    Palladium and ruthenium nanoparticles have been prepared following the organometallic precursor decomposition methodology, under dihydrogen pressure and in the presence of borane protected P-stereogenic phosphines. NMR (Nuclear Magnetic Resonance) monitoring of the corresponding syntheses has permitted to determine the optimal metal/ligand ratio for leading to small and well-dispersed nanoparticles. Exchange ligand reactions of the as-prepared materials have proven the strong interaction of the phosphines with the metal surface; only oxidative treatment using hydrogen peroxide could release the phosphine-based stabiliser from the metal surface. Pd and Ru nanoparticles have been evaluated in hydrogenation reactions, confirming the robustness of the stabilisers, which selectively permitted the hydrogenation of exocyclic C=C bonds, preventing the coordination of the aromatic rings and as a result, their hydrogenation

    The Pharmacogenetics of Symptom Response to Antipsychotic Drugs

    Get PDF
    Antipsychotic drugs are limited in their efficacy by the relatively poor response of negative and cognitive symptoms of schizophrenia as well as by the substantial variability in response between patients. Pharmacogenetic studies have sought to identify the genetic factors that underlie the individual variability in response to treatment, with a past emphasis on dopamine and serotonin receptors as candidate genes. Few studies have separated effects on positive and negative symptoms, despite the established differences in response to drug treatment between these syndromes. Where this has been done most findings are consistent with the conclusion that dopamine receptor polymorphisms relate to positive symptom response, while negative symptom improvement is influenced by polymorphisms of genes involved in 5-HT neurotransmission. A wide range of polymorphisms in other candidate genes have been investigated, with some positive findings in those genes associated with glutamatergic transmission and/or risk factors for schizophrenia. However, there remains a lack of good replicated findings; furthermore there is little evidence to support drug-specific genetic associations with treatment response. While most past studies focused on single candidate genes, technology now permits genome-wide association studies with response to antipsychotics. Although not without major limitations, these "hypothesis-free" approaches are beginning to identify further important risk factors for treatment response. Again there is little consistency between various studies, although some of the polymorphisms identified are in genes involved in neurodevelopment, which is increasingly being recognized as important in the pathophysiology of schizophrenia

    Genomewide Association Scan of Suicidal Thoughts and Behaviour in Major Depression

    Get PDF
    Background Suicidal behaviour can be conceptualised as a continuum from suicidal ideation, to suicidal attempts to completed suicide. In this study we identify genes contributing to suicidal behaviour in the depression study RADIANT. Methodology/Principal Findings A quantitative suicidality score was composed of two items from the SCAN interview. In addition, the 251 depression cases with a history of serious suicide attempts were classified to form a discrete trait. The quantitative trait was correlated with younger onset of depression and number of episodes of depression, but not with gender. A genome-wide association study of 2,023 depression cases was performed to identify genes that may contribute to suicidal behaviour. Two Munich depression studies were used as replication cohorts to test the most strongly associated SNPs. No SNP was associated at genome-wide significance level. For the quantitative trait, evidence of association was detected at GFRA1, a receptor for the neurotrophin GDRA (p = 2e-06). For the discrete trait of suicide attempt, SNPs in KIAA1244 and RGS18 attained p-values of <5e-6. None of these SNPs showed evidence for replication in the additional cohorts tested. Candidate gene analysis provided some support for a polymorphism in NTRK2, which was previously associated with suicidality. Conclusions/Significance This study provides a genome-wide assessment of possible genetic contribution to suicidal behaviour in depression but indicates a genetic architecture of multiple genes with small effects. Large cohorts will be required to dissect this further

    Lipid Classes and Fatty Acid Patterns are Altered in the Brain of Îł-Synuclein Null Mutant Mice

    Get PDF
    The well-documented link between α-synuclein and the pathology of common human neurodegenerative diseases has increased attention to the synuclein protein family. The involvement of α-synuclein in lipid metabolism in both normal and diseased nervous system has been shown by many research groups. However, the possible involvement of γ-synuclein, a closely-related member of the synuclein family, in these processes has hardly been addressed. In this study, the effect of γ-synuclein deficiency on the lipid composition and fatty acid patterns of individual lipids from two brain regions has been studied using a mouse model. The level of phosphatidylserine (PtdSer) was increased in the midbrain whereas no changes in the relative proportions of membrane polar lipids were observed in the cortex of γ-synuclein-deficient compared to wild-type (WT) mice. In addition, higher levels of docosahexaenoic acid were found in PtdSer and phosphatidylethanolamine (PtdEtn) from the cerebral cortex of γ-synuclein null mutant mice. These findings show that γ-synuclein deficiency leads to alterations in the lipid profile in brain tissues and suggest that this protein, like α-synuclein, might affect neuronal function via modulation of lipid metabolism

    Correlation of Inter-Locus Polyglutamine Toxicity with CAG‱CTG Triplet Repeat Expandability and Flanking Genomic DNA GC Content

    Get PDF
    Dynamic expansions of toxic polyglutamine (polyQ)-encoding CAG repeats in ubiquitously expressed, but otherwise unrelated, genes cause a number of late-onset progressive neurodegenerative disorders, including Huntington disease and the spinocerebellar ataxias. As polyQ toxicity in these disorders increases with repeat length, the intergenerational expansion of unstable CAG repeats leads to anticipation, an earlier age-at-onset in successive generations. Crucially, disease associated alleles are also somatically unstable and continue to expand throughout the lifetime of the individual. Interestingly, the inherited polyQ length mediating a specific age-at-onset of symptoms varies markedly between disorders. It is widely assumed that these inter-locus differences in polyQ toxicity are mediated by protein context effects. Previously, we demonstrated that the tendency of expanded CAG‱CTG repeats to undergo further intergenerational expansion (their ‘expandability’) also differs between disorders and these effects are strongly correlated with the GC content of the genomic flanking DNA. Here we show that the inter-locus toxicity of the expanded polyQ tracts of these disorders also correlates with both the expandability of the underlying CAG repeat and the GC content of the genomic DNA flanking sequences. Inter-locus polyQ toxicity does not correlate with properties of the mRNA or protein sequences, with polyQ location within the gene or protein, or steady state transcript levels in the brain. These data suggest that the observed inter-locus differences in polyQ toxicity are not mediated solely by protein context effects, but that genomic context is also important, an effect that may be mediated by modifying the rate at which somatic expansion of the DNA delivers proteins to their cytotoxic state

    De novo single-nucleotide and copy number variation in discordant monozygotic twins reveals disease-related genes

    Get PDF
    Recent studies have demonstrated genetic differences between monozygotic (MZ) twins. To test the hypothesis that early post-twinning mutational events associate with phenotypic discordance, we investigated a cohort of 13 twin pairs (n = 26) discordant for various clinical phenotypes using whole-exome sequencing and screened for copy number variation (CNV). We identified a de novo variant in PLCB1, a gene involved in the hydrolysis of lipid phosphorus in milk from dairy cows, associated with lactase non-persistence, and a variant in the mitochondrial complex I gene MT-ND5 associated with amyotrophic lateral sclerosis (ALS). We also found somatic variants in multiple genes (TMEM225B, KBTBD3, TUBGCP4, TFIP11) in another MZ twin pair discordant for ALS. Based on the assumption that discordance between twins could be explained by a common variant with variable penetrance or expressivity, we screened the twin samples for known pathogenic variants that are shared and identified a rare deletion overlapping ARHGAP11B, in the twin pair manifesting with either schizotypal personality disorder or schizophrenia. Parent-offspring trio analysis was implemented for two twin pairs to assess potential association of variants of parental origin with susceptibility to disease. We identified a de novo variant in RASD2 shared by 8-year-old male twins with a suspected diagnosis of autism spectrum disorder (ASD) manifesting as different traits. A de novo CNV duplication was also identified in these twins overlapping CD38, a gene previously implicated in ASD. In twins discordant for Tourette's syndrome, a paternally inherited stop loss variant was detected in AADAC, a known candidate gene for the disorder

    Germline variation at 8q24 and prostate cancer risk in men of European ancestry

    Get PDF
    Chromosome 8q24 is a susceptibility locus for multiple cancers, including prostate cancer. Here we combine genetic data across the 8q24 susceptibility region from 71,535 prostate cancer cases and 52,935 controls of European ancestry to define the overall contribution of germline variation at 8q24 to prostate cancer risk. We identify 12 independent risk signals for prostate cancer (p < 4.28 × 10−15), including three risk variants that have yet to be reported. From a polygenic risk score (PRS) model, derived to assess the cumulative effect of risk variants at 8q24, men in the top 1% of the PRS have a 4-fold (95%CI = 3.62–4.40) greater risk compared to the population average. These 12 variants account for ~25% of what can be currently explained of the familial risk of prostate cancer by known genetic risk factors. These findings highlight the overwhelming contribution of germline variation at 8q24 on prostate cancer risk which has implications for population risk stratification

    Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants

    Get PDF
    Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Peer reviewe

    Hydrogenation processes at the surface of ruthenium nanoparticles: A NMR study

    No full text
    1022-5528The reactivity of ruthenium nanoparticles stabilized by 4-(3-phenylpropyl)pyridine in hydrogen transfer and hydrogenation processes was monitored by NMR spectroscopy. Unsaturated substrates such as styrene, 4-vinylpyridine and 4-phenyl-but-3-en-2-one were used as model molecules to investigate the surface properties of nanoparticles by a combination of NMR studies. Interestingly, the hydrides present at the metallic surface after nanoparticles synthesis are selectively transferred to vinylic groups without reducing the aromatic rings, under dihydrogen-free atmosphere. DOSY and NOE NMR experiments permitted to propose a way of interaction of the organic compounds at the metallic surface. In particular, the coordination of the substrate could be evidenced for 4-vinylpyridine and 4-ethylpyridine but not for styrene derivatives. Curved double arrows represent magnetization exchanges. Straight arrows represent adsorption/desorption phenomena
    • 

    corecore