116 research outputs found

    Expression of estrogen receptors in the hypothalamo-pituitary-ovarian axis in middle-aged rats after re-instatement of estrus cyclicity

    Get PDF
    During reproductive aging female rats enter an anovulatory state of persistent estrus (PE). In an animal model of re-instatement of estrus cyclicity in middle-aged PE rats we injected the animals with progesterone (0.5 mg progesterone/kg body weight) at 12:00 for 4 days whereas control animals received corn oil injections. After the last injection animals were analyzed at 13:00 and 17:00. Young regular cycling rats served as positive controls and were assessed at 13:00 and 17:00 on proestrus. Progesterone treatment of middle-aged PE rats led to occurrence of luteinizing hormone (LH), follicle stimulating hormone (FSH), and prolactin surges in a subset of animals that were denoted as responders. Responding middle-aged rats displayed a reduction of ER-β mRNA in the preoptic area which was similar to the effect in young rats. Within the mediobasal hypothalamus, only young rats showed a decline of ER-α mRNA expression. A decrease of ER-α mRNA levels in the pituitary was observed in progesterone-responsive rats and in young animals. ER-β mRNA expression was reduced in young regular cycling rats. ER-β mRNA levels in the ovary were reduced following progesterone treatment in PE rats and in young rats. Taken together our data show that cyclic administration of progesterone reinstates ovulatory cycles in intact aging females which have already lost their ability to display spontaneous cyclicity. This treatment leads to the occurrence of preovulatory LH, FSH and prolactin surges which are accompanied by differential modulation of ERs in the hypothalamus, the pituitary and the ovary

    Contrasting Genetic Structure in Two Co-Distributed Species of Old World Fruit Bat

    Get PDF
    The fulvous fruit bat (Rousettus leschenaulti) and the greater short-nosed fruit bat (Cynopterus sphinx) are two abundant and widely co-distributed Old World fruit bats in Southeast and East Asia. The former species forms large colonies in caves while the latter roots in small groups in trees. To test whether these differences in social organization and roosting ecology are associated with contrasting patterns of gene flow, we used mtDNA and nuclear loci to characterize population genetic subdivision and phylogeographic histories in both species sampled from China, Vietnam and India. Our analyses from R. leschenaulti using both types of marker revealed little evidence of genetic structure across the study region. On the other hand, C. sphinx showed significant genetic mtDNA differentiation between the samples from India compared with China and Vietnam, as well as greater structuring of microsatellite genotypes within China. Demographic analyses indicated signatures of past rapid population expansion in both taxa, with more recent demographic growth in C. sphinx. Therefore, the relative genetic homogeneity in R. leschenaulti is unlikely to reflect past events. Instead we suggest that the absence of substructure in R. leschenaulti is a consequence of higher levels of gene flow among colonies, and that greater vagility in this species is an adaptation associated with cave roosting

    Nutrition and the ageing brain: moving towards clinical applications

    Get PDF
    The global increases in life expectancy and population have resulted in a growing ageing population and with it a growing number of people living with age-related neurodegenerative conditions and dementia, shifting focus towards methods of prevention, with lifestyle approaches such as nutrition representing a promising avenue for further development. This overview summarises the main themes discussed during the 3 Symposium on "Nutrition for the Ageing Brain: Moving Towards Clinical Applications" held in Madrid in August 2018, enlarged with the current state of knowledge on how nutrition influences healthy ageing and gives recommendations regarding how the critical field of nutrition and neurodegeneration research should move forward into the future. Specific nutrients are discussed as well as the impact of multi-nutrient and whole diet approaches, showing particular promise to combatting the growing burden of age-related cognitive decline. The emergence of new avenues for exploring the role of diet in healthy ageing, such as the impact of the gut microbiome and development of new techniques (imaging measures of brain metabolism, metabolomics, biomarkers) are enabling researchers to approach finding answers to these questions. But the translation of these findings into clinical and public health contexts remains an obstacle due to significant shortcomings in nutrition research or pressure on the scientific community to communicate recommendations to the general public in a convincing and accessible way. Some promising programs exist but further investigation to improve our understanding of the mechanisms by which nutrition can improve brain health across the human lifespan is still required

    Comparative Phylogeography of a Coevolved Community: Concerted Population Expansions in Joshua Trees and Four Yucca Moths

    Get PDF
    Comparative phylogeographic studies have had mixed success in identifying common phylogeographic patterns among co-distributed organisms. Whereas some have found broadly similar patterns across a diverse array of taxa, others have found that the histories of different species are more idiosyncratic than congruent. The variation in the results of comparative phylogeographic studies could indicate that the extent to which sympatrically-distributed organisms share common biogeographic histories varies depending on the strength and specificity of ecological interactions between them. To test this hypothesis, we examined demographic and phylogeographic patterns in a highly specialized, coevolved community – Joshua trees (Yucca brevifolia) and their associated yucca moths. This tightly-integrated, mutually interdependent community is known to have experienced significant range changes at the end of the last glacial period, so there is a strong a priori expectation that these organisms will show common signatures of demographic and distributional changes over time. Using a database of >5000 GPS records for Joshua trees, and multi-locus DNA sequence data from the Joshua tree and four species of yucca moth, we combined paleaodistribution modeling with coalescent-based analyses of demographic and phylgeographic history. We extensively evaluated the power of our methods to infer past population size and distributional changes by evaluating the effect of different inference procedures on our results, comparing our palaeodistribution models to Pleistocene-aged packrat midden records, and simulating DNA sequence data under a variety of alternative demographic histories. Together the results indicate that these organisms have shared a common history of population expansion, and that these expansions were broadly coincident in time. However, contrary to our expectations, none of our analyses indicated significant range or population size reductions at the end of the last glacial period, and the inferred demographic changes substantially predate Holocene climate changes

    Insights into the Musa genome: Syntenic relationships to rice and between Musa species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Musa </it>species (Zingiberaceae, Zingiberales) including bananas and plantains are collectively the fourth most important crop in developing countries. Knowledge concerning <it>Musa </it>genome structure and the origin of distinct cultivars has greatly increased over the last few years. Until now, however, no large-scale analyses of <it>Musa </it>genomic sequence have been conducted. This study compares genomic sequence in two <it>Musa </it>species with orthologous regions in the rice genome.</p> <p>Results</p> <p>We produced 1.4 Mb of <it>Musa </it>sequence from 13 BAC clones, annotated and analyzed them along with 4 previously sequenced BACs. The 443 predicted genes revealed that Zingiberales genes share GC content and distribution characteristics with eudicot and Poaceae genomes. Comparison with rice revealed microsynteny regions that have persisted since the divergence of the Commelinid orders Poales and Zingiberales at least 117 Mya. The previously hypothesized large-scale duplication event in the common ancestor of major cereal lineages within the Poaceae was verified. The divergence time distributions for <it>Musa</it>-Zingiber (Zingiberaceae, Zingiberales) orthologs and paralogs provide strong evidence for a large-scale duplication event in the <it>Musa </it>lineage after its divergence from the Zingiberaceae approximately 61 Mya. Comparisons of genomic regions from <it>M. acuminata </it>and <it>M. balbisiana </it>revealed highly conserved genome structure, and indicated that these genomes diverged circa 4.6 Mya.</p> <p>Conclusion</p> <p>These results point to the utility of comparative analyses between distantly-related monocot species such as rice and <it>Musa </it>for improving our understanding of monocot genome evolution. Sequencing the genome of <it>M. acuminata </it>would provide a strong foundation for comparative genomics in the monocots. In addition a genome sequence would aid genomic and genetic analyses of cultivated <it>Musa </it>polyploid genotypes in research aimed at localizing and cloning genes controlling important agronomic traits for breeding purposes.</p

    Historical biogeography of european leuciscins (Cyprinidae): Evaluating the Lago Mare dispersal hypothesis

    Get PDF
    ABSTRACT Aim To test the importance of the Lago Mare stage of the Messinian Salinity Crisis for the dispersal and diversification of European leuciscins (Cyprinidae: Leuciscinae). Location Europe. Methods Cytochrome b sequences of European leuciscins were employed to investigate phylogenetic relationships among species, using Bayesian inference, and to estimate times of diversification, using a relaxed molecular clock. The distributions of 190 European leuciscins were compiled, and regional species compositions were compared using a taxonomic similarity index and an area cladogram. Results Leuciscins restricted to the Iberian and Italian peninsulas and the West and South Balkan regions are phylogenetically more closely related to northern European species than to species from another southern European area. Application of a relaxed molecular clock to a Bayesian phylogeny indicates that most southern clades originated and diversified prior to the Messinian. Southern European regions are taxonomically distinct from one another, and from a more taxonomically homogeneous group of areas that includes Anatolia, East Balkans, Middle East, North Europe and West Russia. Main conclusions The scenario of a Messinian period of dispersal of Paratethyan fauna into Mediterranean regions, via the Lago Mare, predicts a rapid period of diversification and a pattern of close association among southern European faunas. Phylogenetic relationships among leuciscins, the timing of cladogenic events, and the taxonomic similarity among geographical regions do not conform to this expectation. The depth of clades endemic to southern Europe, together with the high levels of endemism in these regions, suggests that the faunas in these regions diverged prior to the Messinian and have evolved largely in isolation from one another. Our results support a model of gradual colonization of Mediterranean regions since the Oligocene. Subsequent connections between adjacent areas may have occurred in the Messinian or Pleistocene

    Male-specific deficits in natural reward learning in a mouse model of neurodevelopmental disorders

    Get PDF
    Neurodevelopmental disorders, including autism spectrum disorders, are highly male biased, but the underpinnings of this are unknown. Striatal dysfunction has been strongly implicated in the pathophysiology of neurodevelopmental disorders, raising the question of whether there are sex differences in how the striatum is impacted by genetic risk factors linked to neurodevelopmental disorders. Here we report male-specific deficits in striatal function important to reward learning in a mouse model of 16p11.2 hemideletion, a genetic mutation that is strongly associated with the risk of neurodevelopmental disorders, particularly autism and attention-deficit hyperactivity disorder. We find that male, but not female, 16p11.2 deletion animals show impairments in reward-directed learning and maintaining motivation to work for rewards. Male, but not female, deletion animals overexpress mRNA for dopamine receptor 2 and adenosine receptor 2a in the striatum, markers of medium spiny neurons signaling via the indirect pathway, associated with behavioral inhibition. Both sexes show a 50% reduction of mRNA levels of the genes located within the 16p11.2 region in the striatum, including the kinase extracellular-signal related kinase 1 (ERK1). However, hemideletion males show increased activation in the striatum for ERK1, both at baseline and in response to sucrose, a signaling change associated with decreased striatal plasticity. This increase in ERK1 phosphorylation is coupled with a decrease in the abundance of the ERK phosphatase striatum-enriched protein-tyrosine phosphatase in hemideletion males. In contrast, females do not show activation of ERK1 in response to sucrose, but notably hemideletion females show elevated protein levels for ERK1 as well as the related kinase ERK2 over what would be predicted by mRNA levels. These data indicate profound sex differences in the impact of a genetic lesion linked with neurodevelopmental disorders, including mechanisms of male-specific vulnerability and female-specific resilience impacting intracellular signaling in the brain
    corecore