
Male-specific deficits in natural
reward learning in a mouse model
of neurodevelopmental disorders

The Harvard community has made this
article openly available.  Please share  how
this access benefits you. Your story matters

Citation Grissom, N. M., S. E. McKee, H. Schoch, N. Bowman, R. Havekes,
W. T. O'Brien, E. Mahrt, et al. 2018. “Male-specific deficits in
natural reward learning in a mouse model of neurodevelopmental
disorders.” Molecular Psychiatry 23 (3): 544-555. doi:10.1038/
mp.2017.184. http://dx.doi.org/10.1038/mp.2017.184.

Published Version doi:10.1038/mp.2017.184

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:35014424

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH 

https://core.ac.uk/display/154893541?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Male-specific%20deficits%20in%20natural%20reward%20learning%20in%20a%20mouse%20model%20of%20neurodevelopmental%20disorders&community=1/4454685&collection=1/4454686&owningCollection1/4454686&harvardAuthors=bda4c0caa8187811959d510e168edc37&department
http://nrs.harvard.edu/urn-3:HUL.InstRepos:35014424
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


OPEN

ORIGINAL ARTICLE

Male-specific deficits in natural reward learning in a mouse
model of neurodevelopmental disorders
NM Grissom1,2,10, SE McKee1,2, H Schoch2,3,11, N Bowman2,4, R Havekes2,3,12, WT O’Brien2,4, E Mahrt5, S Siegel6,13, K Commons7,
C Portfors5, T Nickl-Jockschat8,9,14, TM Reyes1,2,15 and T Abel2,3,16

Neurodevelopmental disorders, including autism spectrum disorders, are highly male biased, but the underpinnings of this are
unknown. Striatal dysfunction has been strongly implicated in the pathophysiology of neurodevelopmental disorders, raising the
question of whether there are sex differences in how the striatum is impacted by genetic risk factors linked to neurodevelopmental
disorders. Here we report male-specific deficits in striatal function important to reward learning in a mouse model of 16p11.2
hemideletion, a genetic mutation that is strongly associated with the risk of neurodevelopmental disorders, particularly autism
and attention-deficit hyperactivity disorder. We find that male, but not female, 16p11.2 deletion animals show impairments in
reward-directed learning and maintaining motivation to work for rewards. Male, but not female, deletion animals overexpress
mRNA for dopamine receptor 2 and adenosine receptor 2a in the striatum, markers of medium spiny neurons signaling via the
indirect pathway, associated with behavioral inhibition. Both sexes show a 50% reduction of mRNA levels of the genes located
within the 16p11.2 region in the striatum, including the kinase extracellular-signal related kinase 1 (ERK1). However, hemideletion
males show increased activation in the striatum for ERK1, both at baseline and in response to sucrose, a signaling change
associated with decreased striatal plasticity. This increase in ERK1 phosphorylation is coupled with a decrease in the abundance
of the ERK phosphatase striatum-enriched protein-tyrosine phosphatase in hemideletion males. In contrast, females do not show
activation of ERK1 in response to sucrose, but notably hemideletion females show elevated protein levels for ERK1 as well as the
related kinase ERK2 over what would be predicted by mRNA levels. These data indicate profound sex differences in the impact of a
genetic lesion linked with neurodevelopmental disorders, including mechanisms of male-specific vulnerability and female-specific
resilience impacting intracellular signaling in the brain.
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INTRODUCTION
Neurodevelopmental disorders, including autism spectrum dis-
orders (ASD) and attention-deficit hyperactivity disorder (ADHD),
are highly male biased. For example, ASD are strongly sex biased,
occurring in four males for every one female,1 rising as high as
seven males for every one female in cases with normal IQ.2

However, the mechanisms leading to sex differences in prevalence
are unknown. A number of theories have been developed that
suggest that sex differences in neural function contribute to risk of
neurodevelopmental disorders.3,4 Human genetic studies indicate
that the male bias in autism has its foundation in differential
vulnerability to genetic lesions. Compared with males, females
require a higher burden of genetic mutations and copy number
variations (CNVs) to be diagnosed with autism.5,6 Indeed, even

highly penetrant ASD-linked CNVs predominantly affect males,7

suggesting that the female brain may be resilient in response to
genetic lesions that are strongly associated with diagnosis
in males.
Animal models of genetic mutations and CNVs associated with

neurodevelopmental disorder have the potential to provide
significant insights into the molecular pathophysiology of the
male bias in diagnoses. A CNV on chromosome 16 resulting in the
loss of one copy of the 16p11.2 region profoundly increases the
risk of diagnosis of neurodevelopmental disorders, particularly
autism8 and ADHD,9 and even 16p11.2 heterozygous deletion
carriers that do not meet specific diagnostic criteria often display
language deficits and autism-like symptoms.9,10 However, the risk
of a psychiatric diagnosis is elevated in male 16p11.2 hetero-
zygous deletion carriers over female carriers.9,11 Human 16p11.2
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deficiency syndrome can be very closely modeled in mice via
hemideletion of chromosome 7qF3,12 as the genetic architecture
of this region is highly conserved. In both species, this region
contains 27 genes, including the gene encoding extracellular-
signal related kinase 1 or ERK1 (the gene is also known as
mitogen-activated protein kinase 3 (mapk3)).13,14 ERK1 and the
closely related kinase ERK2 have a crucial role in neuronal function
and memory formation.15–17 However, prior studies describing the
effects of 16p11.2 hemideletion in animal models have not
examined whether the impact of the CNV differs between males
and females,12,18–20 despite evidence for sex differences in ERK1
and ERK2 function.21

Disruptions in striatal function have been implicated in many
neurodevelopmental disorders. The salience of rewards and the
ability to associate actions with rewarding outcomes22,23 are
mediated through striatal signaling and are thought to underlie
many clinical symptoms of neurodevelopmental disorders,24–26

including the symptoms of autism and ADHD. Structural
abnormalities of the striatum have been consistently seen in
neurodevelopmental disorders,27–32 including 16p11.2 hemidele-
tion specifically,33 and these abnormalities have been linked with
the severity of repetitive symptoms and errors in problem
solving.28,34 Functional deficits in striatal activity are seen in
individuals with autism in response to both social and nonsocial
rewards.31,34–36 Interestingly, activation of the striatum in response
to rewards differs between men and women,37 but sex differences
in the underlying molecular processes supporting reward
responses in this region are not well understood. The significance
of the striatum to mediating these cognitive domains raises the
question of whether this region is differentially impacted by
genetic risk factors linked with neurodevelopmental disorders in a
sex-dependent manner. Here we report male-specific deficits in
goal-directed learning and motivation in a mouse model of
16p11.2 hemideletion,12 linked with sex-specific alterations in
ERK1 signaling in the striatum.

MATERIALS AND METHODS
Animals
All animals were cared for in accordance with the guidelines of the
National Institutes of Health and were approved by the University of
Pennsylvania and Washington State University Institutional Animal Care
and Use Committees. Colony founders from the 16p11.2 hemideletion
(del/+) line generated in the laboratory of Dr Alea Mills were obtained from
Jackson Laboratories (Bar Harbor, ME, USA; male founders: B6129S-Del
(7Slx1b-Sept1)4Aam/J; Jackson Laboratories Stock no. 013128; female
founders: Females; B6129SF1/J; Jackson Laboratories Stock no.101043).
Male and female animals aged 470 days were used in all experiments.
Additional methodological details can be found in Supplemental
Information.

Behavioral testing
Operant testing. Animals engaging in operant testing were moved to a
0900–2100 hours reversed light cycle to permit testing during the dark
period. Food restriction was used to maintain animals at 85–95% of free
feeding weight for the duration of testing. Testing of fixed ratio (FR),
progressive ratio and five-choice serial reaction time schedules were
conducted exactly as previously described.38

Sucrose preference. Animals were singly housed prior to sucrose testing.
Sucrose solution (4%) was prepared in deionized water and provided in the
home cage using water bottles identical to those that provided standard
water, as previously described.39 Animals were allowed to freely choose
between the bottles containing water or sucrose for 72 h.

Auditory brainstem response. Hearing ability of 16p11.2 +/− mice and
wild-type (WT) littermates was tested by recording anesthetized auditory
brainstem responses as previously described.40

RNA quantification
Mice were killed at the onset of the dark period. Coronal sections through
the striatum, including dorsomedial and dorsolateral striatum, nucleus
accumbens and ventral pallidum were removed on ice using a mouse
brain matrix allowing 1 mm sections, and tissue was preserved with
RNAlater. RNA was extracted using Trizol (Ambion, Carlsbad, CA, USA) and
converted to cDNA. Gene expression for the genes in the 16p11.2 region
was assessed using Taqman assays directed at the appropriate targets,
analyzed via high-throughput gene expression as measured by a Fluidigm
Biomark HD 96× 96 array and/or a Viia7 Real Time PCR system (Life
Technologies, Carlsbad, CA, USA). Expression normalized to the geometric
mean of glyceraldehyde 3-phosphate dehydrogenase (gapdh) and hprt
was calculated using the comparative Ct method. Data were analyzed as t-
tests within sexes using GraphPad Prism 6.0 (San Diego, CA, USA).

Protein quantification
Mice were killed at the onset of the dark period. For experiments
comparing sucrose consumption to baseline (Figures 4 and 5), 4% sucrose
was provided to animals via an additional bottle placed next to the home
cage water bottle. All animals had undergone previous sucrose preference
testing to remove novelty-induced aversion, and animals were observed to
ensure sucrose was consumed. Animals were killed under either basal
conditions or 40 min after the start of sucrose consumption. Brains were
rapidly removed and coronal sections through the striatum were removed
on ice in a similar manner as sections used for RNA analysis. Tissue was
flash-frozen for later western blotting analysis and kept at − 80 °C. Proteins
were detected using standard western blotting techniques, using
fluorescent secondary antibodies (Licor, Lincoln, NE, USA) enabling
simultaneous detection of total and phosphorylated proteins. Data were
analyzed with GraphPad Prism 6.0 using two-way analyses of variance,
with Tukey multiple comparison tests for post hoc analysis and t-tests for
direct comparisons.

RESULTS
Action–outcome associations and motivation are impaired in
male, but not in female, del/+ mice
Chr7qF3-deficient (del/+) and WT male and female mice were
trained on a fixed-ratio 1 (continuous reinforcement) nosepoke
task in a nine-hole mouse operant chamber (Figure 1a) while
under mild food restriction, which had similar effects on body
weight regardless of sex or genotype (Supplementary Figure 1).
WT animals of both sexes rapidly learned to associate a nosepoke
action to the center hole with the delivery of sweetened
reinforcement at the magazine within 2–3 days of training. Male
del/+ animals were impaired in acquiring this relationship
(Figure 1a), requiring 7–8 days of training on average to reach
levels of responding comparable to WT males. In contrast, female
del/+ mice were unimpaired in learning this basic association in
comparison to WT females. To understand the behavioral patterns
contributing to deficits in FR1 learning in del/+ males, we
examined the distribution of nonreinforced responses to the
holes flanking the target hole on the first day of FR training in our
first cohort (Figure 1b). In the early stages of training, it would not
be clear to an animal which of the various actions it performed
was the trigger for reward delivery, only that it had performed
actions in the vicinity of the center hole immediately prior to
reinforcement. Therefore, animals that are in the process of
making an association between their actions and the rewarding
outcome would be expected to make more response attempts at
holes near the center of the array that are more likely to have
been possible triggers for reward delivery and fewer at the holes
at the edge of the array. WT males, and all females regardless
of genotype, performed the majority of their nonreinforced
responses to the two holes flanking the reinforced center hole.
Del/+ males, in contrast, showed a more general pattern of
responding and did not focus their responses to the area near the
target hole in the early stages of training (Figure 1b), indicating
that they were impaired in directing their actions to earn
reinforcement. We also examined the rate of nonreinforced
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responses and found that these were uniquely reduced in del/+
males, despite displaying normal levels of activity in the operant
chamber during FR1 training (Supplementary Figure 2). Thus del/+
males show deficits in performing the specific exploratory
behaviors WT males employ in an attempt to elicit more frequent
reinforcement, despite not being different in activity and explora-
tion of the chamber in general. To determine whether del/+ males
showed more general learning deficits, we examined behavior in
two Pavlovian tasks, a Pavlovian cued approach task assessed prior
to FR1 training (Supplementary Figure 3) and a Pavlovian
contextual fear conditioning task (Supplementary Figure 4). We
found that del/+ males displayed normal learning and performance
in both Pavlovian tasks, indicating that their deficits appeared
limited to learning operant action–outcome associations.
Difficulties in acquiring operant responding may be driven by

deficits in motivation to work for reinforcement. Following FR
training, motivation was assessed in all groups via a progressive
ratio schedule. Male del/+ mice displayed diminished motivation
to work for reinforcement compared with WT males, while female

del/+ were unaffected (Figure 1c). Because the animals in operant
testing are working for sweetened liquid, we assessed preference
for free sucrose in the home cage to ensure that this did not
contribute to behavioral deficits. Both male and female del/+ mice
displayed equal preference for sucrose compared with WT
(Figure 1d), consistent with a substantial literature dissociating
preference from motivation in striatal circuits.41 Although this
literature has typically described intact motivation for a reward
despite a deficit in preference in addiction models, the current
data indicate that the reverse scenario, deficits in motivation
despite intact preference, can also occur.
A cohort of animals trained in operant testing continued on into

the five-choice serial reaction time test (5-CSRTT),42 which
distinguishes errors of response accuracy, impulsivity and
inattention. For this task, animals were first trained that responses
at any odd-numbered hole, not merely hole 5, would now be
reinforced. Interestingly, while del/+ males made a similar number
of reinforced responses as WT males, reinforced responses made
by del/+ males were disproportionately targeted to hole 5 over
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Figure 1. A mouse model of 16p11.2 hemideletion shows male-specific impairments in operant learning and motivation. (a) Male chr7qF3
deficient12 (16p11 del/+) males were significantly delayed at acquiring a nosepoke response under a fixed ratio 1 schedule of reinforcement
compared with wild-type males (genotype × time interaction F(7,420)= 2.1, P= 0.05). In contrast, female 16p11 del/+ animals learned at a rate
indistinguishable from female wild type (no effect of genotype or genotype ×day interaction). No main effects of sex were seen in an analysis
of variance (ANOVA) of all four groups or male and female wild type alone. (b) During shaping of the operant response, nonreinforced
responses in the nine-hole nosepoke array were preferentially made at the holes flanking the reinforced hole by wild-type males but not by
del/+ males (χ2 test comparing del/+ response distribution to wild-type response distribution, χ2(3)= 43.7, Po0.0001). In contrast, both wild-
type and del/+ females made the majority of their nonreinforced responses to the target-proximal holes (χ2 not significant). (c) In a progressive
ratio test of motivation, del/+ males ceased responding after significantly fewer trials than wild-type males (t(56)= 2.91, P= 0.005) while del/+
females were no different than wild type (t-test not significant). No main effects of sex were seen in ANOVA comparing all four groups or in t-
tests comparing male and female wild-type mice. (d) Del/+ animals of either sex showed no difference in sucrose preference (unpaired t-tests
not significant). n in all figures= 7–10 per group. Panels (a, c and d) depict mean± s.e.m. Panel (b) depicts mean proportions. *Indicates
significant difference from wildtype of the same sex. §Indicates a significant gene × day of testing interaction.
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the other possible reinforcing responses for the first several days
(Supplementary Figure 5). This difficulty in acquiring a greater
variety of reinforced responses suggests that del/+ males may
express deficits in forming action–outcome associations because
of interference from alternative behaviors. Once the responses to
all odd-numbered holes were learned, animals were transitioned
to the 5-CSRTT. Male del/+ animals performed fewer correct trials
in the 5-CSRTT than controls, while no significant differences in
performance were seen in the females (Figure 2). Decreased
correct performance in male del/+ was associated with signifi-
cantly increased numbers of incorrect trials, indicating reduced
response accuracy but not errors indicative of impulsivity or
inattention. This pattern of deficits is associated with striatal
lesions that leave the cortex spared,43 a manipulation that reduces
the ability of the animal to associate specific responses with
reinforcement.44 Significantly, with additional training the incor-
rect response deficit in del/+ males was eliminated
(Supplementary Figure 6), consistent with the idea that this deficit
reflected an inability to acquire a new action–outcome associa-
tion, rather than being driven by enduring attention deficits. Thus
del/+ males appear to show a profound inability to correctly
associate responses with rewarding outcomes. Deficits in response
accuracy without significant increases in premature or omitted
trials can be caused by striatal dysfunction leading to deficits in
integrating cortical inputs.43,44

Impairments in striatal function have been linked with inner ear
dysfunction.45 Another mouse model of 16p11.2 hemideletion
expressed on a pure C57BL6/J background displayed profound
deafness.18 Therefore, we examined auditory brainstem responses
in the current model to test for any hearing impairments that
might confound our findings of striatal dysfunction. Del/+ animals
in our model displayed no hearing impairments compared with
WT mice (Supplementary Figure 7), indicating that hearing loss is
not a typical consequence of 16p11.2 hemideletion in mice but is
specific to the line on the Bl6/J background.

Gene expression for receptors specific to dopamine indirect
pathway signaling in the striatum are elevated only in male del/+
The striatum is essential for the learning and execution of
motivated behaviors and is substantially more impacted by
hemideletion of 16p11.2 than other brain regions, such as the
hippocampus.46 We next examined whether the loss of one copy
of the 16p11.2 region led to differential patterns of gene
expression in the striatum of male and female del/+ animals.
Using a high-throughput quantitative reverse transcriptase-PCR
array, we first assayed the expression levels of the 27 genes
located in the mouse homolog of the 16p11.2 region on
chromosome 7. We found that nearly all of these genes are
expressed in the striatum, and there were no sex differences in the
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mRNA levels of any of the hemideleted genes in the striatum,
which were all reduced by half in male and female del/+ mice
(Supplementary Figures 8a and b). A notable gene located within
the 16p11.2 region is the ubiquitous kinase ERK1 (mapk3). ERK1,
and the closely related kinase ERK2 (mapk1), have been widely
demonstrated to regulate neuronal function.13,15,16,47 In the
striatum, these kinases have been shown to have opposing roles,
such that ERK1 diminishes striatal neural plasticity, whereas ERK2
enhances it.16,48 As with the other genes in the 16p11.2 region,
mRNA levels for ERK1 in del/+ animals were reduced by half, and
the expression of ERK2 (mapk1), located outside the hemideleted
region, was not altered in either sex by the hemideletion
(Supplementary Figure 8c).
Striatal neuron populations are composed primarily of medium

spiny neurons (MSNs), which can express either dopamine
receptor 1 (D1 or Drd1) or dopamine receptor 2 (D2 or Drd2).
The balance of activity between these neurons has a critical role in
the acquisition of goal-directed behavior.49–52 Activity at D1+
MSNs, forming the ‘direct pathway’, is necessary for the initiation
of actions, while activity at D2+ MSNs, forming the ‘indirect
pathway’, serves to inhibit actions, including operant responding.
Balanced activity between D1 and D2 MSNs is necessary to
prevent both excessive off-target behaviors and excessive
behavioral inhibition.43,49,51–53 A different model of 16p11.2
hemideletion found elevations in D2+ neurons in the striatum
on postnatal day 154 but did not investigate animals in adulthood
or examine males and females separately. The current data are
consistent with this prior finding and suggest that these effects
may persist into adulthood and should be a target of future
investigation. Because of the importance of these receptors to
striatal circuits and the operant deficits we observed in del/+
males, we investigated the expression of these receptors in the
adult striatum.
Male del/+ animals showed elevations in mRNA for D2, along

with adenosine 2a receptor which is expressed specifically on D2-
positive MSNs (Figure 3a). In contrast, female del/+ animals
showed no change in the expression of either receptor (Figure 3b).
The metabotropic glutamate receptor mGluR5 (Grm5), which is
expressed on both D1 and D2 MSNs, and along with dopamine
regulates striatal neuron signaling, was elevated in both male and
female del/+. Thus, while both sexes are impacted at the level of

gene expression in the striatum for both 16p11.2-specific genes
and mGluR5, male del/+ animals display specific vulnerability
toward overexpression of Drd2 and adenosine 2a receptor, which
would be expected to drive deficits in motivation and action
initiation.49,52

The male-specific deficits in operant behavior and striatal
dopamine receptor expression induced by loss of one copy of
the 16p11.2 region raised the question of whether there are
differences in dopamine synthesis or turnover within corticostriatal
circuits. There were no differences in total dopamine levels in either
the dorsal or ventral striatum or in the prefrontal cortex as
measured by HPLC, and the ratio of dopamine to its metabolites
HVA and DOPAC were also unaltered (Supplementary Figure 9).
Thus changes in midbrain dopamine neurons are unlikely to
account for behavioral deficits and mRNA changes seen in del/+
males, raising the question of whether molecular abnormalities
within the striatum drive vulnerability in these males.

16p11.2 hemideletion leads to male-specific abnormalities in ERK1
phosphorylation at baseline and in response to natural rewards
and female-specific increases in ERK protein levels
The kinase ERK1 is located in the 16p11.2 region and is a central
regulator of protein–protein interactions of genes within the
region.55 Reward-directed behavior is profoundly influenced by
ERK phosphorylation and ERK1 dosage in the striatum,15,16 such
that ERK1 signaling decreases neuronal activity and the ability to
associate reward, while the activity of the close homolog ERK2
enhances these functions.16,48 Phosphorylation of ERK proteins in
the MSNs of the striatum occurs in response to a number of
rewarding substances, including sucrose15,47,56,57 and drugs of
abuse.56,58–60 Prior reports have indicated that, despite loss of one
copy of ERK1, phosphorylation of ERK1 is elevated by 16p11.2
hemideletion in both mouse and human tissues,19,61 but these
studies did not examine sex differences.
Because the loss of one copy of ERK1 occurred in del/+ animals

of both sexes but the behavioral impairments were specific to the
males, we questioned whether there might be sex differences in
the impact of 16p11.2 hemideletion on the activation of ERK
intracellular signaling following the consumption of sucrose, the
natural reward driving responding in our operant task. ERK
proteins are known to be phosphorylated shortly after the initial
exposure to a reward and during operant training.15,47 To
interrogate this signaling and how it might be impacted by
16p11.2 hemideletion, we provided animals with short-term
access to sucrose in the home cage and examined ERK1 and
ERK2 phosphorylation 40 min after sucrose consumption began, a
time point where ERK striatal phosphorylation is increased
following reward delivery58,60,62 and that mimics the unexpected
sucrose delivery in the operant chamber during the early stages of
goal-directed learning.
In del/+ males, ERK1 phosphorylation under basal conditions

was slightly elevated (Figure 4a), consistent with prior literature.19

ERK1 phosphorylation was also elevated in response to sucrose
consumption in both del/+ and WT males. However, the elevation
of ERK1 phosphorylation in del/+ males far exceeded that of WT
males, such that the ratio of phosphorylated ERK1 relative to the
normalizing protein GAPDH was significantly elevated in del/+
males (Figure 4b). As before, ERK1 protein levels were reduced in
del/+ males to 50% of WT male levels (Figure 4c). ERK2
phosphorylation in the striatum was not significantly affected by
genotype or sucrose. Thus ERK1 in the striatum of del/+ males is
hyperphosphorylated, and this condition is significantly exacer-
bated by exposure to sucrose, suggesting aberrant ERK1-mediated
signaling events in the striatum of del/+ males in response to
natural rewards.
Phosphorylation of ERK proteins in the brain are regulated by

the activity of the upstream kinase mitogen-activated ERK (MEK).
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Figure 3. Receptors specific to the striatal indirect pathway are only
elevated in male animals with 16p11.2 hemideletion. (a) There were
no changes in expression in dopamine receptor 1 (Drd1a) in del/+
males. However, the striatum of del/+ males shows significant
elevations in dopamine receptor 2 (Drd2, t(16)= 2.47, P= 0.02),
adenosine receptor 2a (Adora2a, t(14)= 3.05, P= 0.008) and meta-
botropic glutamate receptor 5 (mGluR5/Grm5, t(12)= 2.29, P= 0.04).
(b) In female del/+, there were no changes in expression in any
receptor except Grm5, which was elevated in expression compared
with wild-type females (t(17)= 2.83, P= 0.01). n= 6–10 per group. All
panels depict mean± s.e.m. *Indicates significant difference from
wild type from the same sex.

Male-specific deficits in a mouse model of 16p11.2 hemideletion
NM Grissom et al

548

Molecular Psychiatry (2018), 544 – 555



We investigated the levels and activity of MEK2 in the striatum to
determine whether the increase in ERK1 phosphorylation in male
del/+ was due to changes in upstream signaling mechanisms.
MEK2 levels were not affected by 16p11.2 hemideletion, and it
was equally activated in WT and del/+ males in response to
sucrose (Supplementary Figure 10), indicating upstream signaling
mechanisms, such as those mediated by mGluR5 signaling,
were not responsible for the hyperphosphorylation of ERK1 in
male del/+.
Studies demonstrating the involvement of ERK phosphorylation

in response to rewarding substances have largely been conducted
in males. Because del/+ females were unaffected in goal-directed
learning by hemideletion of ERK1, it is possible that ERK signaling
mechanisms in the striatum are differentially impacted by natural
rewards in females. We therefore examined ERK1 and ERK2
phosphorylation in female WT and del/+ following sucrose
consumption, paralleling the experiments in males. When striatal

ERK was examined in females 40 min after the initiation of sucrose
consumption, we found no evidence of induced ERK1 or ERK2
phosphorylation in females of either genotype in response to
sucrose (Figure 5). This is in contrast to the induction of ERK1
phosphorylation in males, suggesting that there are sex differ-
ences in molecular signaling in response to natural rewards in the
striatum. Unexpectedly, female del/+ had higher ERK1 and ERK2
protein levels than would be expected by gene expression levels
alone. ERK1 protein levels reached approximately 75% of female
WT levels, appreciably higher than the 50% of male WT ERK1
protein seen in male del/+ striatum (Figure 4). Likewise, total ERK2
protein levels were significantly elevated in del/+ females
compared with WT females, despite similar levels of ERK2 mRNA
expression in these groups (Supplementary Figure 8). Thus two
significant sex differences in striatal ERK signaling emerge—first,
the intracellular signaling initiated in response to natural rewards
in males is not recapitulated in females, and second, the protein
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levels of ERK1 and ERK2 in the striatum appear to be significantly
elevated in del/+ females beyond what would be expected based
on genotype or mRNA levels.
The apparent elevation in ERK1 protein levels in female del/+

animals led us to question whether intrinsic sex differences in
ERK1 levels could account for this difference. Accordingly, we
collected striatum from male and female WT and del/+ animals in
a single experiment and analyzed ERK1 and ERK2 phosphorylated
and total protein levels to allow us to directly compare protein
levels across all conditions (Figure 6). ERK1 total protein levels
were again reduced by 50% in del/+ males compared with WT
males, but intriguingly ERK1 total protein was also reduced in the
WT female striatum compared with levels seen in WT males
(Figure 6a). Although the overall amount of ERK1 protein did not
differ between del/+ males and del/+ females, when examined
proportional to WTs of the same sex, female del/+ show an

increased abundance of ERK1 protein. Because ERK1 mRNA levels
were reduced to 50% of WTs in del/+ in both sexes, these data
indicate that mechanisms regulating ERK protein abundance are
enhanced in del/+ females. Indeed, this was seen not only in ERK1
but also in ERK2. Total ERK2 levels did not differ by sex but were
significantly elevated solely in del/+ females compared with WT
females (Figure 6), replicating our prior finding (Figure 5).
We next asked how sex interacted with genotype to influence

the previously observed differences in basal ERK phosphorylation.
Despite the reduction of total ERK1 in del/+ males, they again
showed a disproportionate level of phosphorylated ERK1, leading
to elevations in the phospho-ERK1: total ERK1 ratio solely in del/+
males (Figure 6c), consistent with our prior experiment (Figure 4).
In contrast, no enhancements in ERK1 phosphorylation normalized
to total ERK1 levels were seen in female del/+. As in our previous
experiments, there were no differences in ERK2 phosphorylation
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between WT and del/+ males. We observed elevated levels
of phosphorylated ERK2 in del/+ females when normalized
to the loading control, but this difference was no longer observed
when normalized to total ERK2 levels, suggesting that this
difference was driven by an increase in the overall abundance
of the protein.
The persistent increase in phosphorylated ERK1 in del/+ males

despite a lack of difference in the ERK kinase MEK (Supplementary
Figure 10) led us to question whether mechanisms of depho-
sphorylation may be disrupted in the del/+ male striatum. We
interrogated levels of the phosphatase striatum-enriched protein-
tyrosine phosphatase (StEP).63–65 As its name indicates, StEP is
highly enriched in the striatum as well as other neural tissues, and
it is a critical negative regulator of ERK phosphorylation via
neuronal excitability.66,67 We found that total levels of one
isoform, StEP61, were reduced specifically in male del/+ striatum
(Figure 6h), suggesting that elevated phosphorylation of ERK1 in
del/+ males may be driven by a decreased ability to negatively
regulate phosphorylation. The relative phosphorylation of StEP61
(associated with inactivation of StEP) was not altered by del/+ in
either sex (Supplementary Figure 11). Thus the behaviorally
vulnerable del/+ males have profound disruptions in striatal
molecular signaling, including abnormal ERK1 activation coupled
with decreased levels of a key negative regulator of ERK
phosphorylation. In contrast, the behaviorally unimpaired del/+
females show not only normalized basal ERK1 phosphorylation
and normal StEP protein levels in the striatum but intriguing
increases in ERK1 and ERK2 protein levels that may contribute to
their resilience.

DISCUSSION
Animal models of CNVs associated with neurodevelopmental
disorders have the potential to provide mechanistic insights into
the pathophysiology of the male bias in these disorders. In a
mouse model of 16p11.2 hemideletion, directly modeling a
human CNV strongly associated with autism and ADHD, we
believe we provide the first demonstration of male-specific
vulnerability to behavioral and molecular deficits caused by a
genetic lesion. Male del/+ mice showed unique impairments in
reward learning and motivation, coupled with excess phosphor-
ylation of the kinase ERK1 at baseline and after consumption of
sucrose, a natural reward. Female carriers of the deletion were
resistant to these behavioral deficits and did not show increased
ERK1 activation, instead showing elevated ERK1 and ERK2 protein
levels. In addition, male del/+ mice displayed reductions in StEP, a
negative regulator of ERK phosphorylation that may contribute to
behavioral dysfunction in 16p11.2 del/+ males. Because ERK1
signaling has been shown to inhibit striatal function, whereas
ERK2 signaling enhances it, it seems likely that the male-specific
increase in striatal ERK1 phosphorylation may drive deficits in
operant learning. In contrast, at least four mechanisms in female
del/+ animals we observed may contribute to their resilience to
behavioral deficits, two ways in which overall protein levels may
be significant and two ways in which phosphorylation may be
significant. First, total ERK1 protein levels in the female WT
striatum are lower than is typical for male WTs, which may mean
the reduction in total ERK1 in female del/+ has less of a
deleterious impact when assessed against what is typical in a
female WT. Second, the fact that ERK1 and ERK2 levels were
elevated in the del/+ female brain over what would be expected
from mRNA measurements suggests that there may be sex-
specific mechanisms critical to the regulation of protein levels that
drive increased molecular resilience in the female brain. There are
not well-described mechanisms by which protein abundance
might be expected to differ between the sexes, though one
Y-chromosome-specific gene, USP9Y, has specific roles in protein
ubiquitination and degradation,68 suggesting one possible

mechanism for sex-dependent regulation of protein levels. Turn-
ing our attention to the phosphorylation of ERK proteins, we must
also consider a role for differential regulation of protein kinase
cascades between the sexes. A third mechanism by which females
may maintain normal behavioral performance is the lack of
baseline hyperphosphorylation of ERK1 in female del/+, coupled
with normal StEP expression, suggesting that ERK kinase cascades
in striatal neurons may be differentially activated in females.
Corroborating this point is a fourth possible contributing
mechanism that the molecular response in the striatum to
experiencing natural rewards such as sucrose is females was not
engaged in the same way as it was for the males. The lack of ERK
phosphorylation in females of either genotype in response to
sucrose that was observed even in WT males suggests, at
minimum, a sex difference in the time course or magnitude of
the intracellular signaling mechanisms induced by sucrose
consumption. In contrast to the lack of known mechanism driving
sex differences in ERK protein abundance, there are existing
reports of large sex differences in the intracellular molecular
cascades for at least one G-protein-coupled receptor,69 which
supports the potential for differential neuronal protein phosphor-
ylation regulation between males and females that might
contribute to male behavioral vulnerability. It remains to be seen
which of these differences in the impact of 16p11.2 hemideletion
is most meaningful to preventing the behavioral deficits seen in
male del/+, but they provide overwhelming evidence that the
female brain is resilient on a molecular level to a CNV associated
with neurodevelopmental disorders.
The cognitive systems supporting reward learning, including

outcome prediction and motivation, are essential to social
behavior, behavioral flexibility and impulse control,26,70 behavioral
domains that are heavily impacted in neurodevelopmental
disorders. Different subregions of the striatum are thought to
support separate aspects of goal-directed learning. Although
dorsal striatal regions support the ability to associate actions with
outcomes and stimuli with responses,71 the nucleus accumbens is
essential for coding the motivational or incentive properties of an
outcome.72 Del/+ males showed impairments in both acquiring an
action–outcome response and maintaining motivation to work for
rewards, suggesting that signaling might be impaired broadly
across striatal subcompartments. Approximately 95% of neurons
across both striatal subregions are MSNs. Del/+ males also showed
increases in striatal gene expression specific to the D2 dopamine
receptor and A2a adenosine receptor, both expressed solely
on indirect pathway MSNs that contribute to behavioral
inhibition.43,49,51,52 A number of other autism-linked genes,
including neurexins, neuregulins and Shank3, are enriched in the
striatum,73–76 and loss-of-function mouse models of these genes
produce dysregulated synaptic function in the striatum localized
to a specific subset of MSNs.73,74,76 Intriguingly, loss of function of
several genes linked to ASD have also been linked to ERK
hyperactivation,77–79 suggesting that this signaling pathway
within the neurons participating in striatal circuits may form a
common deleterious mechanism in neurodevelopmental disor-
ders. Indeed, FMR1 knockout mice show not only ERK hyper-
activation but also similar operant deficits in acquiring new
action–outcome associations in 5-CSRTT training,80 suggesting
that difficulties in the ability to learn new relationships between
specific behaviors and reward is a common cognitive phenotype
in multiple mouse ASD models linked by ERK dysfunction. It is not
possible to know from the current data whether increased ERK1
phosphorylation in del/+ males is specific to a particular
population of MSNs, but our data indicate that neuronal signaling
cascades are likely to account for del/+ male behavioral
vulnerability. Although our findings overall lend substantial
support to the idea that striatal dysfunction appears to be a
common mechanism contributing to the increased male risk for
neurodevelopmental disorders, it is important to note that the
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striatum is only one part of broader neural circuits regulating
motivated behavior. Indeed, the development of cortical
regions essential for regulating striatal function are significantly
impacted in early life by 16p11.2 hemideletion,18,19 suggesting
that multiple components of reward circuitry in the brain
may be disrupted. It may even be the case that molecular
dysfunction in the striatum is driven by abnormal development of
corticostriatal circuits, especially sex-dependent programming of
these circuits.
We repeatedly observed that female del/+ animals did not

display the same behavioral deficits as male del/+, a striking

observation given the profound sex bias in the diagnosis and
severity of neurodevelopmental disorders.5 In addition to normal-
ized expression of markers of the striatal indirect pathway, female
del/+ did not show the hyperphosphorylation of ERK1 seen in
male del/+. Indeed, females did not show detectable changes in
ERK phosphorylation in response to sucrose regardless of
genotype, suggesting sex differences in the dynamics of striatal
intracellular signaling that may leave females less vulnerable to
striatal dysfunction driven by 16p11.2 hemideletion. The increased
abundance of ERK1 and ERK2 proteins in the female del/+ striatum
may serve to normalize the baseline phosphorylation of ERKs and
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thus their downstream function. Although mice with a complete
deletion of ERK1 were previously shown to have normal ERK2
protein abundance in the striatum,16 this work was only
conducted in male mice, leaving the questions of sex-specific
compensation and the impact of heterozygous deletion of ERK1
unaddressed. An intriguing open question is whether female del/+
display differences in protein abundance in other important
signaling molecules. Sex differences in the impact of a genetic
lesion on protein abundance is consistent with the well-known
links between mutations in genes regulating protein synthesis and
the risk of neurodevelopmental disorders.81 Another open
question revolves around the mechanisms driving the differential
impact of 16p11.2 hemideletion on males and females. Although
adult gonadal steroids can regulate ERK phosphorylation,82–84 the
differences may also result from early-life masculinization or the
gene dosage of sex chromosome-linked regulators of protein
abundance and function.68,85,86 Future studies systematically
exploring the basis of this sex difference will be needed to
uncover where and how in development sex acts to influence the
impact of this CNV. Because neurodevelopmental disorders driven
by genetic factors other than 16p11.2 hemideletion are also
strongly male biased, this work could have the potential to reveal
more general mechanisms and therapeutic avenues.
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Figure 6. Elevated extracellular-signal related kinase (ERK1) phosphorylation is associated with decreased protein levels of striatal-enhanced
phosphatase (StEP) in del/+ males. By analyzing male and female wild-type and del/+ striatal tissue in the same experiment, we were able to
assess which, if any, sex-specific effects of 16p11.2 hemideletion on ERK1 and ERK2 activation and protein levels were due to intrinsic sex
differences. (a) Total ERK1 protein was reduced in both male and female del/+ to 50% of male wild-type levels (main effect genotype F
(1,27)= 54.2, Po0.0001), but ERK1 protein was also significantly lower in female wild types than male wild types (main effect sex F(1,27= 6.9,
P= 0.01), indicating a partial normalization of del/+ female ERK1 levels. (b) Consistent with the overall hemideletion of ERK1, 16p11.2 del/+ of
both sexes have significantly decreased phosphorylated ERK1 normalized to the loading control beta-tubulin (main effect genotype F
(1,30)= 5.8, P= 0.02), consistent with the reduction in ERK1 gene expression. (c) Male 16p11.2 del/+ show hyperactivated ERK1. Relative to the
total amount of ERK1 protein available in each condition, del/+ males have significantly increased levels of phosphorylated ERK1 (male wt vs
del/+ t(15)= 2.1, P= 0.05). Female del/+ do not show any increases in ERK1 phosphorylation relative to female wild types. (d) Total ERK2
protein was not altered in male del/+ but was significantly increased in female del/+ compared with female wild type (t(15)= 2.5, P= 0.02). (e)
Relative to the loading control protein β-tubulin, del/+ females have significantly increased levels of pERK2 (genotype × sex interaction F
(1,26)= 4.6, P= 0.04). (f) Relative to the total amount of ERK2, there were no differences in the amount of phosphorylated ERK2 caused by del/
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