663 research outputs found

    On the Crepant Resolution Conjecture in the Local Case

    Full text link
    In this paper we analyze four examples of birational transformations between local Calabi-Yau 3-folds: two crepant resolutions, a crepant partial resolution, and a flop. We study the effect of these transformations on genus-zero Gromov-Witten invariants, proving the Coates-Corti-Iritani-Tseng/Ruan form of the Crepant Resolution Conjecture in each case. Our results suggest that this form of the Crepant Resolution Conjecture may also hold for more general crepant birational transformations. They also suggest that Ruan's original Crepant Resolution Conjecture should be modified, by including appropriate "quantum corrections", and that there is no straightforward generalization of either Ruan's original Conjecture or the Cohomological Crepant Resolution Conjecture to the case of crepant partial resolutions. Our methods are based on mirror symmetry for toric orbifolds.Comment: 27 pages. This is a substantially revised and shortened version of my preprint "Wall-Crossings in Toric Gromov-Witten Theory II: Local Examples"; all results contained here are also proved there. To appear in Communications in Mathematical Physic

    Spatial distribution of photoelectrons participating in formation of x-ray absorption spectra

    Full text link
    Interpretation of x-ray absorption near-edge structure (XANES) experiments is often done via analyzing the role of particular atoms in the formation of specific peaks in the calculated spectrum. Typically, this is achieved by calculating the spectrum for a series of trial structures where various atoms are moved and/or removed. A more quantitative approach is presented here, based on comparing the probabilities that a XANES photoelectron of a given energy can be found near particular atoms. Such a photoelectron probability density can be consistently defined as a sum over squares of wave functions which describe participating photoelectron diffraction processes, weighted by their normalized cross sections. A fine structure in the energy dependence of these probabilities can be extracted and compared to XANES spectrum. As an illustration of this novel technique, we analyze the photoelectron probability density at the Ti K pre-edge of TiS2 and at the Ti K-edge of rutile TiO2.Comment: Journal abstract available on-line at http://link.aps.org/abstract/PRB/v65/e20511

    Comparative Study of Multifragmentation of Gold Nuclei Induced by Relativistic Protons, 4^4He, and 12^{12}C

    Full text link
    Multiple emission of intermediate-mass fragments has been studied for the collisions of p, 4^4He and 12^{12}C on Au with the 4π4\pi setup FASA. The mean IMF multiplicities (for the events with at least one IMF) are saturating at the value of 2.2±0.22.2\pm0.2 for the incident energies above 6 GeV. The observed IMF multiplicities cannot be described in a two-stage scenario, a fast cascade followed by a statistical multifragmentation. Agreement with the measured IMF multiplicities is obtained by introducing an intermediate phase and modifying empirically the excitation energies and masses of the remnants. The angular distributions and energy spectra from the p-induced collisions are in agreement with the scenario of ``thermal'' multifragmentation of a hot and diluted target spectator. In the case of 12^{12}C+Au(22.4 GeV) and 4^4He(14.6 GeV)+Au collisions, deviations from a pure thermal break-up are seen in the energy spectra of the emitted fragments, which are harder than those both from model calculations and from the measured ones for p-induced collisions. This difference is attributed to a collective flow.Comment: 33 pages 15 figures, accepted in Nucl. Phys.

    Semiparametric theory and empirical processes in causal inference

    Full text link
    In this paper we review important aspects of semiparametric theory and empirical processes that arise in causal inference problems. We begin with a brief introduction to the general problem of causal inference, and go on to discuss estimation and inference for causal effects under semiparametric models, which allow parts of the data-generating process to be unrestricted if they are not of particular interest (i.e., nuisance functions). These models are very useful in causal problems because the outcome process is often complex and difficult to model, and there may only be information available about the treatment process (at best). Semiparametric theory gives a framework for benchmarking efficiency and constructing estimators in such settings. In the second part of the paper we discuss empirical process theory, which provides powerful tools for understanding the asymptotic behavior of semiparametric estimators that depend on flexible nonparametric estimators of nuisance functions. These tools are crucial for incorporating machine learning and other modern methods into causal inference analyses. We conclude by examining related extensions and future directions for work in semiparametric causal inference

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore