221 research outputs found

    A model of interacting Navier-Stokes singularities

    Full text link
    We introduce a model of interacting singularities of Navier-Stokes, named pin\,cons. They follow a Hamiltonian dynamics, obtained by the condition that the velocity field around these singularities obeys locally Navier-Stokes equations. This model can be seen of a generalization of the vorton model of Novikov, that was derived for the Euler equations. When immersed in a regular field, the pin\,cons are further transported and sheared by the regular field, while applying a stress onto the regular field, that becomes dominant at a scale that is smaller than the Kolmogorov length. We apply this model to compute the motion of a dipole of pin\,cons. When the initial relative orientation of the dipole is inside the interval (0, pi/2), a dipole made of pin\,con of same intensity exhibits a transient collapse stage, following a scaling with dipole radius tending to 0 like (tc - t) power 0.63. For long time, the dynamics of the dipole is however repulsive, with both components running away from each other to infinity.Comment: 24 pages 13 figure

    Understanding entrepreneurial deviance through social learning and entrepreneurial action theory: an empirical study

    Get PDF
    Purpose: The purpose of this exploratory study is to examine entrepreneurial deviance from the perspective of New Zealand's commercial honey producers. The study adopts entrepreneurial action and social learning theories and proposes a theoretical framework in the context of entrepreneurial deviance. Design/methodology/approach: Data were collected through online surveys from 52 professional beekeepers. Findings: Overstocking of beehives, encroachment, biosecurity threats and unfair competition were most common forms of deviance affecting participants. While these predominantly responded through investing in disease prevention, security equipment or by reporting deviant incidents, finding proper solutions remains elusive. The findings revealed robust alignments with both theories. Overall, offenders’ perceived incentives to act illustrate alignment with social learning theory’s four key constructs. Entrepreneurial action emerged through individual perpetrators’ evaluation and subsequent maximisation of potentially lucrative opportunities. Originality/value: The study addresses an important and under-researched dimension, notably, the negative or “dark” side of entrepreneurs, in this case, illustrated through greed and disregard for fair and proper ways of conducting business. This knowledge gap is even more obvious among small and medium business, which is also the focus of the research. © 2020, Emerald Publishing Limited

    Photostriction in Ferroelectrics from Density Functional Theory

    Get PDF
    International audienceAn ab initio procedure allowing the computation of the deformation of ferroelectric-based materials under light is presented. This numerical scheme consists in structurally relaxing the system under the constraint of a fixed n e concentration of electrons photoexcited into a specific conduction band edge state from a chosen valence band state, via the use of a constrained density functional theory method. The resulting change in lattice constant along a selected crystallographic direction is then calculated for a reasonable estimate of n e. This method is applied to bulk multiferroic BiFeO 3 and predicts a photostriction effect of the same order of magnitude than the ones recently observed. A strong dependence of photostrictive response on both the reached conduction state and the crystallographic direction (along which this effect is determined) is also revealed. Furthermore, analysis of the results demonstrates that the photostriction mechanism mostly originates from the screening of the spontaneous polarization by the photoexcited electrons in combination with the inverse piezoelectric effect. The coupling of ferroelectric or multiferroic materials with light is currently attracting a lot of attention [1], as, e.g., demonstrated by the above-band-gap photovoltages found in BiFeO 3 (BFO) thin films [2], the search of low band gap materials for photovoltaic applications [3], or the recent development in the so-called hybrid perovskite solar cells [4]. Beyond the photovoltaic effect, there is another coupling between light and properties of ferroelectrics or multiferroics that is of current interest, namely, the so-called photostriction effect, a deformation of the material under illumination [5]. The photostriction phenomenon opens new perspectives for combining several functionalities in future generations of remote switchable devices and is promising for the realization of light-induced actuators [5]. It has been recently observed in BFO under visible light [6,7]. A giant shear strain generated by femtosecond laser pulses was also reported [8,9], and time-resolved synchrotron diffraction reported a shift of the Bragg peak on a picosecond time scale in both bismuth ferrite [10] and lead titanate [11]. However, the microscopic mechanism responsible for photostriction is poorly understood [8,9]. Obviously, having accurate numerical techniques able to tackle photostriction will allow us to " shed some light " on this effect. However, to the best of our knowledge, such numerical tools allowing a systematic study of the photostriction phenomenon and its atomistic origin are not available yet, despite recent attempts to use Density Functional Theory (DFT) as a tool to fit x-ray absorption spectra in pump-probe photostriction experiments [12]. Here, we report the development of an ab initio procedure to compute photostriction from first principles. This procedure not only reproduces the order of magnitude of the observed change of lattice constant in BFO [6], but also reveals that photostriction mostly originates from the combination of the screening of the polarization by the electrons photoejected in the conduction band and the inverse piezoelectric effect. It is also found that photo-striction depends on the precise conduction state the electron is excited into, and on the crystallographic direction along which the effect is studied. In order to realize the difficulty in mimicking photo-striction, let us start by recalling that the Kohn-Sham (KS) implementation of DFT [13] reformulates the many-body problem of interacting electrons into many single-body problems, and " only " guarantees that the model noninter-acting KS Hamiltonian yields the same ground state density and energy as the real interacting Hamiltonian. Such a fact, therefore, leaves the description of unoccupied states within traditional DFT an unanswered question, and the determination of excitation energies remains the privilege of rather costly techniques, such as time-dependent DFT [14] or the GW approximation [15]. However, an alternative formulation of DFT that treats ground and excited states on the same footing has been proposed [16]. In particular, Ref. [16] connected each eigenstate of a real interacting Hamiltonian with the eigenstate of a model noninteracting Hamiltonian through a generalized adiabatic connection (GAC) scheme. The so-called ΔSCF method [17] takes advantage of this GAC scheme, and assumes an one-to-one correspondence between the excited states of a single Kohn-Sham system and the real system [16]. This ΔSCF scheme has proved successful and computationall

    Knowledge formalization in experience feedback processes : an ontology-based approach

    Get PDF
    Because of the current trend of integration and interoperability of industrial systems, their size and complexity continue to grow making it more difficult to analyze, to understand and to solve the problems that happen in their organizations. Continuous improvement methodologies are powerful tools in order to understand and to solve problems, to control the effects of changes and finally to capitalize knowledge about changes and improvements. These tools involve suitably represent knowledge relating to the concerned system. Consequently, knowledge management (KM) is an increasingly important source of competitive advantage for organizations. Particularly, the capitalization and sharing of knowledge resulting from experience feedback are elements which play an essential role in the continuous improvement of industrial activities. In this paper, the contribution deals with semantic interoperability and relates to the structuring and the formalization of an experience feedback (EF) process aiming at transforming information or understanding gained by experience into explicit knowledge. The reuse of such knowledge has proved to have significant impact on achieving themissions of companies. However, the means of describing the knowledge objects of an experience generally remain informal. Based on an experience feedback process model and conceptual graphs, this paper takes domain ontology as a framework for the clarification of explicit knowledge and know-how, the aim of which is to get lessons learned descriptions that are significant, correct and applicable

    Multiferroic phase transition near room temperature in BiFeO3 films

    Full text link
    In multiferroic BiFeO3 thin films grown on highly mismatched LaAlO3 substrates, we reveal the coexistence of two differently distorted polymorphs that leads to striking features in the temperature dependence of the structural and multiferroic properties. Notably, the highly distorted phase quasi-concomitantly presents an abrupt structural change, transforms from a hard to a soft ferroelectric and transitions from antiferromagnetic to paramagnetic at 360+/-20 K. These coupled ferroic transitions just above room temperature hold promises of giant piezoelectric, magnetoelectric and piezomagnetic responses, with potential in many applications fields

    Lpd depletion reveals that SRF specifies radial versus tangential migration of pyramidal neurons

    Get PDF
    During corticogenesis, pyramidal neurons (~80% of cortical neurons) arise from the ventricular zone, pass through a multipolar stage to become bipolar and attach to radial glia[superscript 1, 2], and then migrate to their proper position within the cortex[superscript 1, 3]. As pyramidal neurons migrate radially, they remain attached to their glial substrate as they pass through the subventricular and intermediate zones, regions rich in tangentially migrating interneurons and axon fibre tracts. We examined the role of lamellipodin (Lpd), a homologue of a key regulator of neuronal migration and polarization in Caenorhabditis elegans, in corticogenesis. Lpd depletion caused bipolar pyramidal neurons to adopt a tangential, rather than radial-glial, migration mode without affecting cell fate. Mechanistically, Lpd depletion reduced the activity of SRF, a transcription factor regulated by changes in the ratio of polymerized to unpolymerized actin. Therefore, Lpd depletion exposes a role for SRF in directing pyramidal neurons to select a radial migration pathway along glia rather than a tangential migration mode.Ruth L. Kirschstein National Research Service Award (grant F32- GM074507)National Institutes of Health (U.S.) (grant # GM068678

    ROCK1 and LIMK2 Interact in Spread but Not Blebbing Cancer Cells

    Get PDF
    Cancer cells migrating within a 3D microenvironment are able to adopt either a mesenchymal or amoeboid mode of migration. Amoeboid migration is characterised by membrane blebbing that is dependent on the Rho effectors, ROCK1/2. We identify LIMK2 as the preferred substrate for ROCK1 but find that LIMK2 did not induce membrane blebbing, suggesting that a LIMK2 pathway is not involved in amoeboid-mode migration. In support of this hypothesis, novel FRET data demonstrate a direct interaction between ROCK1 and LIMK2 in polarised but not blebbing cells. Our results point to a specific role for the ROCK1:LIMK2 pathway in mesenchymal-mode migration

    The last forests on Antarctica: Reconstructing flora and temperature from the Neogene Sirius Group, Transantarctic Mountains

    Get PDF
    Fossil-bearing deposits in the Transantarctic Mountains, Antarctica indicate that, despite the cold nature of the continent’s climate, a tundra ecosystem grew during periods of ice sheet retreat in the mid to late Neogene (17–2.5 Ma), 480 km from the South Pole. To date, palaeotemperature reconstruction has been based only on biological ranges, thereby calling for a geochemical approach to understanding continental climate and environment. There is contradictory evidence in the fossil record as to whether this flora was mixed angiosperm-conifer vegetation, or whether by this point conifers had disappeared from the continent. In order to address these questions, we have analysed, for the first time in sediments of this age, plant and bacterial biomarkers in terrestrial sediments from the Transantarctic Mountains to reconstruct past temperature and vegetation during a period of East Antarctic Ice Sheet retreat. From tetraether lipids (MBT’/CBT palaeothermometer), we conclude that the mean continental summer temperature was ca. 5 °C, in agreement with previous reconstructions. This was warm enough to have allowed woody vegetation to survive and reproduce even during the austral winter. Biomarkers from vascular plants indicate a low diversity and spatially variable flora consisting of higher plants, moss and algal mats growing in microenvironments in a glacial outwash system. Abietane-type compounds were abundant in some samples, indicating that conifers, most likely Podocarpaceae, grew on the Antarctic continent well into the Neogene. This is supported by the palynological record, but not the macrofossil record for the continent, and has implications for the evolution of vegetation on Antarctica

    A Systematic Screen for Tube Morphogenesis and Branching Genes in the Drosophila Tracheal System

    Get PDF
    Many signaling proteins and transcription factors that induce and pattern organs have been identified, but relatively few of the downstream effectors that execute morphogenesis programs. Because such morphogenesis genes may function in many organs and developmental processes, mutations in them are expected to be pleiotropic and hence ignored or discarded in most standard genetic screens. Here we describe a systematic screen designed to identify all Drosophila third chromosome genes (∼40% of the genome) that function in development of the tracheal system, a tubular respiratory organ that provides a paradigm for branching morphogenesis. To identify potentially pleiotropic morphogenesis genes, the screen included analysis of marked clones of homozygous mutant tracheal cells in heterozygous animals, plus a secondary screen to exclude mutations in general “house-keeping” genes. From a collection including more than 5,000 lethal mutations, we identified 133 mutations representing ∼70 or more genes that subdivide the tracheal terminal branching program into six genetically separable steps, a previously established cell specification step plus five major morphogenesis and maturation steps: branching, growth, tubulogenesis, gas-filling, and maintenance. Molecular identification of 14 of the 70 genes demonstrates that they include six previously known tracheal genes, each with a novel function revealed by clonal analysis, and two well-known growth suppressors that establish an integral role for cell growth control in branching morphogenesis. The rest are new tracheal genes that function in morphogenesis and maturation, many through cytoskeletal and secretory pathways. The results suggest systematic genetic screens that include clonal analysis can elucidate the full organogenesis program and that over 200 patterning and morphogenesis genes are required to build even a relatively simple organ such as the Drosophila tracheal system
    corecore