
Knowledge Formalization in Experience Feedback Processes :
An Ontology-Based Approach

B. Kamsu Foguema, T.Couderta, C.Bélera, L.Genestea

a LGP Laboratoire Génie de Production - Ecole Nationale d'Ingénieurs de Tarbes
47, avenue Azereix - BP 1629, F-65016 Tarbes Cedex

Tel : + 33 (0)5 62 44 29 43 Fax : + 33 (0)5 62 44 27 08
E-mail: {Bernard.Kamsu-Foguem, Thierry.Coudert, cbeler, Laurent.Geneste }@enit.fr

Abstract

Because of the current trend of integration and interoperability of industrial systems, their size and complexity continue to
grow making it more difficult to analyze, to understand and to solve the problems that happen in their organizations.
Continuous improvement methodologies are powerful tools in order to understand and to solve problems, to control the
effects of changes and finally to capitalize knowledge about changes and improvements. These tools involve suitably
represent knowledge relating to the concerned system. Consequently, Knowledge Management (KM) is an increasingly
important source of competitive advantage for organizations. Particularly, the capitalization and sharing of knowledge
resulting from experience feedback are elements which play an essential role in the continuous improvement of industrial
activities. In this paper, the contribution deals with semantic interoperability and relates to the structuring and the
formalization of an Experience Feedback (EF) process aiming at transforming information or understanding gained by
experience into explicit knowledge. The reuse of such knowledge has proved to have significant impact on achieving the
missions of companies. However, the means of describing the knowledge objects of an experience generally remain informal.
Based on an experience feedback process model and conceptual graphs, this paper takes domain ontology as a framework for
the clarification of explicit knowledge and know-how, the aim of which is to get lessons learned descriptions that are
significant, correct and applicable.

Keywords: Interoperability, Continuous improvement, Knowledge Management, Experience Feedback, Formal Ontology,
Conceptual Graphs

1. Introduction

Because of the current trend of integration and
interoperability of industrial systems, their size and
complexity continue to grow making it more difficult
to analyze, to understand and to solve the problems
that happen in their organizations. Classical
hierarchical and stable organizations are
progressively replaced by distributed, networked and
unstable ones, implying deep changes. Organizations
have to adapt to this distributed and often ephemeral
context. So, continuous improvement methodologies
developed since many years in enterprises are still
topical questions. They are powerful tools in order to
understand problems, to solve them, to control the

effects of changes and finally, to capitalize explicit
knowledge about changes and improvements. These
tools require to suitably represent knowledge relating
to the concerned system, its environment, its
missions and the situations in which this system
evolves [1].
However, the ongoing distributed nature of
enterprises leads to new requirements concerning
interoperability (enterprises have to co-operate in
order to reach global objectives - see section 1.2).
On the other hand, continuous improvement and
problem solving methodologies have to be adapted
to these new configurations.
Considering this context, the new requirements about
continuous improvement and enterprise

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12039522?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

interoperability are successively described in the
following sections 1.1 and 1.2.

1.1. Continuous improvement requirements

Continuous improvement constitutes a major aspect
of the family of standards ISO 9000 maintained by
ISO (International Organization for
Standardization). It focuses on improving customer
satisfaction through continuous and incremental
improvements to products, services and processes. In
order to meet requirements implied by continuous
improvement, one key point is to optimize the
problem solving process. This process is started
when a negative event (i.e. with a negative impact on
the client or on the organization) occurs. It aims at
analyzing and solving the current problem then to
avoid its reemergence.
Several methods have been set up in order to
organize the problem solving processes. One of the
most widely used is the plan-do-check-act (PDCA)
cycle, also known as Deming Cycle. Several other
frameworks are commonly used such as 8
Disciplines (8D) also called TOPS (Team-Oriented
Problem Solving), Six Sigma DMAIC (Define,
Measure, Analyze, Improve and Control), 7-step,
etc.
The main actions in these processes are:

- to form a problem resolution team,
- to describe and evaluate the event criticality,
- to analyze the event, to search for root causes and

to validate the analysis,
- to propose a solution to the problem and apply it

(curative solution),
- to suggest actions to avoid another occurrence of

the problem (lessons learned, preventive
solution)

The proposed EF frame is a generic representation of
industrial problem solving methods where five main
information slots can be distinguished: event,
context, analysis, solution and lessons learned.
Figure 1 shows the structure of the main problem
solving processes and a mapping between the
corresponding activities and the information slots
that compose an experience. This mapping enables
to put the emphasis on the links between problem
solving processes in industrial organizations and
experience feedback capitalization. It can be
considered as a high-level guideline for practical
experience feedback implementation.

Form
team

Define
problem

Contain
problem

Identify
and define
root causes

Choose
corrective

actions

Implement
corrective

actions

Prevent
recurrence

Reward
team

Define and
contain
problem

Measure
problem

Analysis of
root causes

Select and
implement
improvment

Evaluate
solutions

Standardize
and control

Future
Plans

Measure
problem

Analysis of
root causes Improve Control

solutions

8D

DMAIC

7-step

Do Check ActPlanPDCA

Event +
ContextExperience Solution Lesson

LearnedAnalysis

Define
problem

Fig. 1: Mapping between “Problem solving processes” and the proposed experience model

1.2. Interoperability

Many companies are getting away from tight
application-to-application interfaces as well as
traditional enterprise application integration because
of the too monolithic resulting systems [2]. These
approaches are more and more replaced by service
oriented, loosely coupled, message-based, and
asynchronous techniques within networked

organizations. The main characteristics of these
organisations are: “virtuality” (enterprises are
gathered for ephemeral co-operation in order to
respond to market challenges); distributed control;
inter-organizational business processes (business
processes cross the entire organization); various
supply chains, shared information and knowledge. In
this context, enterprise interoperability is a key

factor. IEEE [3] defines interoperability as “the
ability of two or more systems or components to
exchange information and to use the information that
has been exchanged”.
Let us explain the links between interoperability and
Experience Feedback developed in this work.
Because of integration and interoperability
requirements in industrial systems, the size and
complexity of problems continue to grow. To be able
to analyze, to understand and to solve the technical
problems turn into a challenge. The quantity of
information to model, to process, to store, to
exchange and to analyze becomes more and more
important.
- Let us consider a centralized industrial system
without interoperability requirements. In such a
system, the benefits of carrying out an EF process
(see section 1.1) are usually well known and many
enterprises have implemented it (at least partially in
maintenance and quality services for instance – See
examples of industrial applications in [4], [5]). In
this situation, the most important is to have models
based on ontology as well as problem solving
processes as proposed in this article.
- Let us consider now a networked (or distributed)
organization with strong interoperability
requirements. The quantity of information becomes
very important and applications are usually
distributed. The occurrence of a technical problem at
a node of the networked organization and its
resolution generate information. This information
has to be transformed into explicit knowledge in
order to be reused by other entities when similar
problems will arise in the future. Rather than solving
the problem locally using problem solving
techniques, this paper proposes an EF process that
enables not only to solve problems and to capitalize
knowledge, but also to share knowledge with the
entire organisation. The proposed methodology is
based on the idea that a better interoperability can be
reached if different actors have guidelines for
knowledge capitalization and exploitation using a
common ontology. Analysis and solutions carried
out can be reused each time a similar problem is
detected. The interoperability for which the
proposed EF process contributes is a semantic one. It
concerns the ability to understand the content of
exchanged messages by senders as well as by
receivers [6]. Each of them must understand the
knowledge capitalized by the others.
Therefore, the proposed EF process participates to
the reduction of the complexity induced by the
interoperability requirements. The corollary is that
carrying out an EF process participates to the
integration and then, favours a better interoperability
because the system will be aided to share
information and knowledge.
It is important to notice that this paper does not
focus on “how to reach interoperability within an

organization”. It provides tools and methodological
considerations aiming at supporting interoperability
of networked organisations. The two following
hypothesis are assumed:
i) To be able to capitalize and to share knowledge
about problem solving participates to integration and
to interoperability because this knowledge can be
distributed among further actors or entities;
ii) Several distributed manufacturing units gathered
with a common goal of performance can better
interoperate if they are able to deploy a wide
continuous improvement methodology using a
predefined framework based on a common ontology
of the domain and a common ontology of experience
feedback.
The paper is structured as follows. Section 2 exposes
the state of the art concerning Knowledge
Management and Experience Feedback approaches.
Some comparisons between common architectures
like KADS/CommonKADS and the Experience
Feedback ones are discussed. In section 3, the
proposed experience feedback framework is
presented. Section 4 explains how the vocabulary is
structured defining an ontology. The definition of
ontology and its importance in this work concerning
interoperability and problem solving are described as
well as the justification of the conceptual graphs
paradigm as processing support for ontology.
Section 5 describes the proposed experience
feedback process. Knowledge formalization within it
is described in Section 6. An illustrative example is
exposed in section 7. Finally, section 8 concludes
and discusses future challenges.

2. State of the art

Knowledge management (KM) may refer [7] to the
ways organizations gather, manage, and use the
knowledge that they acquire. The term also
designates an approach to improving organizational
outcomes and organizational learning by introducing
into an organization a range of specific processes
and practices for identifying and capturing
knowledge, know-how, expertise and other
intellectual capital, and for making such knowledge
assets available for transfer and reuse across the
organization [8]. Generally, the two major
challenges in a knowledge management process of
an organization are the capitalization and the
exploitation [9]. The former, knowledge
capitalization is the process which allows reusing, in
a relevant way, a given domain knowledge
previously stored and modeled, in order to perform
new tasks [10]. The latter, knowledge exploitation, is
the dissemination of knowledge to serve current
practice and to train future practitioners.
Particularly, Experience Feedback (EF) approach
[11] is a knowledge management initiative which
objective is to convey experiential knowledge or
lessons learned applicable to an operational, tactical,

or strategic level such that, when reused, this
knowledge positively impacts on the results of the
organization. Enterprises turn towards Experience
Feedback processes to avoid reproducing past
mistakes and to benefit from all the knowledge and
the know-how used and produced within them.
Experience feedback models are typically tied to
specific organizational objectives and are intended to
lead to the achievement of specific targeted results.
In the literature, different approaches can be found:
experiential learning [12], lessons learned systems
[13], experience feedback loop [14]. There are two
main limitations of these models: first, an imprecise
description of the vocabulary related to knowledge
models and second, a lack of formal tools allowing
rigorous models analysis.
Section 2.1 exposes how EF is in line with
Knowledge Based Systems, section 2.2 introduces
languages and modeling for problem solving with
the needed requirements and section 2.3 shows why
conceptual graphs are a relevant paradigm to express
and process experiences.

2.1. Experience Feedback versus Knowledge
Based Systems

Differences with usual KM methodologies like
CommonKADS [15] are interesting to consider in
order to better understanding EF. CommonKADS
was actually made from previous KBS
methodologies, especially KADS (Knowledge
Acquisition and Design Structuring). Indeed, it is
often considered as a standard of KBS methodology.
Its process consists in capturing and writing down
the knowledge people are using to do a specific task.
It actually regards the construction of a KBS as a
modeling process. Once a kind of application is
selected, a series of models are developed, which
gradually transform real-world requirements and
expertise into a system implementation. The main
drawbacks of such approaches are:
- the high level of abstraction of models makes

them difficult to be adopted,
- the time and human resources consumptions are

important [16],
- the intervention of a knowledge engineer whose

role is to help the experts to describe their
knowledge is required,

- the extracted knowledge is weakly
contextualized,

- the knowledge maintenance and update require
regular knowledge acquisition sessions.

EF is another way to manage knowledge. It is a
bottom-up approach, where knowledge is built
gradually from useful cases. Generic knowledge can
be extracted but above all, EF is a way to ensure
partial knowledge preservation. Actually, given the
classical hierarchy Data, Information, Knowledge,
experience is halfway between information and

explicit knowledge (knowledge that is formalized).
The gradual transformation is done in three steps.
First the event and its context are described
(Information level) then analysis and solution are
capitalized (Experience Level). The Knowledge
level is reached when lessons learned, procedures,
invariants, rules… are inferred from past
experiences.
To summarize, one major EF advantage resides in
the contextualization of knowledge which makes it
useful for practical needs. Since information and
fragments of knowledge are captured as they arise, it
requires less manpower and time, and the experience
base is gradually updated.
EF consists in capitalizing a particular problem
resolution process which will be used again partially
or totally whereas KADS capitalizes the generic
knowledge necessary to solve a problem through
models of expertise. Actually, the main objective of
KADS is more general than solving an experience
feedback problem.

One major interesting aspect taken from KADS in
the EF framework realization approach is the
formalization degree and the unambiguous
modeling. Actually, there are industrial applications
[17] [18] of EF consisting in the capitalization of
event, context, analysis and solution but they do not
have enough structuring capabilities and often
remain only descriptive. Each container is described
with free text, picture or video. It allows for instance
to create experience booklets and, whereas it is a
very good approach in order to give explanations, it
becomes difficult when it comes to knowledge
extraction and reuse. This is why the outlined EF
approach insists in the formalization, the data
structuring in order to be able to computerize the EF
process and better extract knowledge.

2.2. Languages and modeling for problem
solving

Knowledge-based systems generally include a
complex knowledge base and an inference engine
which uses this knowledge to solve a given problem.
Languages for knowledge-based systems have to
cover both aspects with means to describe
knowledge about the domain and knowledge about
how to use this domain knowledge in order to
achieve the task assigned to the system [19]. There
are several formal languages and modeling
paradigms developed to support knowledge- based
systems (KBSs), with three traditions:
- formal specification languages have spawned

many purpose specification languages:
operational languages (e.g. Prolog), algebraic
specification techniques (e.g. TFL [20]) or
model-based approaches (like B [21] and
DESIRE [22]) which describe a system in terms
of states and operations working on these states.

- reactive system modeling (e.g Statecharts [23])
that offers a framework in which changes
between (complex) states can be specified.

- formal conceptual modeling (like Troll [24] and
Conceptual Graphs [25]) which is concerned
with capturing real-world knowledge and focuses
on modeling domain entities, activities or agents
(ontological knowledge) used to make assertions.

In accordance with the requirements presented by
Baader in [26], the presented work is based upon
Knowledge Representation languages which have
the following characteristics:
- they have a declarative semantic: the knowledge

represented should be defined independently to
the programs processing the knowledge base.

- they are logically founded: the correctness of an
inference mechanism should be defined relatively
to logics, and more specifically to logical
deduction.

- they support knowledge structuration: a
Knowledge Representation language should
provide a way to structure knowledge, such as
the differentiation between ontological and
assertional knowledge. Another aspect of
knowledge structuring is that semantically related
pieces of information should be gathered
together. Hence, it is possible to really report as
much as possible experiences and solution(s).

With respect to these requirements, the proposed
work is concerned with formal conceptual modeling
approach because it provides means to understand
the application domain (modeling schemes capture
key experiences concepts), hence it is possible to
build models of humans’ knowledge/beliefs about
the world. Furthermore, formal conceptual modeling
approach typically uses first order predicate logic as
the underlying formalism and makes use of
abstraction and refinement as structuring primitives.
Particularly, for these reasons conceptual graphs are
helpful in the context of experience feedback.
Besides, on the basis of several criteria (expressive
power, reusability, formal precision) of a method for
language comparison given in [27], the ontology
with conceptual graphs approach undertaken in this
paper appears very interesting for problem solving.
Indeed, the properties (e.g. formal semantics,
separation of knowledge types and possible
translations into other languages) of conceptual
graphs make them suitable for modeling and
specifying experiences feedback processes in which
reasoning plays an essential role.

The main requirements for the experience modeling
are: to enable a structured conceptual modeling and
to support search to facilitate reuse. With respect to
these requirements, two major approaches were
studied: Case Based Reasoning and Conceptual

Graphs. Conceptual Graphs were selected mainly
because of their ability to include in a consistent
framework modeling and search operations.

2.3. Conceptual graphs to express and process
experiences

To provide efficiency and integration, EF processes
must rely on solid theoretical foundations requiring
an appropriate representation language, with clear
and well-defined semantics. This enables the explicit
and non-ambiguous modeling of relevant knowledge.
The representation language must give means to
rigorously represent the used vocabulary, to analyze
the models or to reason about them directly [15].
Taking this into account, the suggested solution to
the quality problem of EF representation relies on
the utilization of a formal representation. EF can be
carried out at operational level by several
techniques. There are usual formalisms like the
combination of frame or object oriented language
with CBR (Case Based Reasoning) techniques or
conceptual graphs for the representation of ontology
and projection operation for the inference. Whereas
both are quite similar in terms of computational
objectives, the choice of Conceptual Graph (CG)
was made because the integration of ontology is a
basic feature of CG and therefore it constitutes an
homogeneous formalism for interoperability
requirements. Hence by the native ontology
integration, a better interoperability is expected (see
section 4 for details).

As a preliminary short definition, a conceptual graph
[25] is a directed, finite, connected graph consisting
of concepts and conceptual relations. Concepts and
relations represent declarative knowledge.
Procedural knowledge can be attached through graph
operations. An essential point is that Conceptual
Graphs support different representation formats
(graphical representation, internal Prolog
representation or first order predicate calculus).
Accordingly, for editing and manipulation of a
knowledge base of Conceptual Graphs, the user can
choose the most preferable format or can combine
the advantages of two different formats [28].
Conceptual graphs language, with its clear and well-
defined semantics, can be helpful in both the
definition of an adequate experience feedback
representation and the development of techniques for
the formal analysis of knowledge models. In addition
to these advantages, a hypothesis can be made:
conceptual graphs have an intuitive structure that can
be understood easily. This paradigm is described in
detail in section 6.
The idea of this paper is to take formal domain
ontology as a foundation for the clarification of
knowledge and know-how. Formal domain ontology
provides a precise and consensual description of the
basic terminology and concepts related to knowledge

capture and codification. With this formal domain
ontology, people are better prepared to enhance
knowledge sharing, which in turn fosters
organizational learning and enriches innovation [29].

3. Proposed approach for experience feedback

The implementation of an experience feedback
process relies on the development of a knowledge
management framework. Generally, the task of a
knowledge management framework is to capture and
manage explicit and tacit knowledge of an
organization in order to facilitate the access, sharing,
and reuse of that information [30]. Knowledge
management must be guided by a strategic vision to
fulfill its primary organizational objectives:
improving knowledge sharing and cooperative work
inside the organization; disseminating best practices;
preserving past knowledge of the company for reuse;
improving the quality of projects and innovations;
anticipating the evolution of the external
environment; preparing for unexpected events and
managing urgency and crisis situations [31].
In practice, a knowledge management framework
can be materialized in various manners. A first
solution consists in gathering and organizing a set of
numerical documents by possibly associating it with
information retrieval tools (for example, Documents
Management Software). The advantage of this
approach is its simplicity of implementation and thus
its low cost. Its major drawback is its lack of
clarification, which leads to difficulties in knowledge
appropriation which, hidden in the documents, must
be exhumed during the consultations. As a simple
example, consider a company’s employee database.
Much explicit information can be retrieved about
specific attributes of employees, but there is plenty
of knowledge which remains implicit; for example,
the technical or strategic knowledge used everyday
inside the company. On the other hand, a second
solution consists of capturing knowledge
requirements in organizations through conceptual
modeling which will be the heart of the Knowledge
Management [15]. The disadvantage from this point
of view is the generated cost: computational
modeling is a heavy component in each problem. Its
advantage is to allow the clarification and the
structuring of knowledge and know-how, which
facilitates at the same time the diffusion, the
evolution and the relevance of knowledge.
In this work, the second point of view is advocated
by considering that a framework of experience
feedback should rely on the conceptualization of
domain vocabulary and relevant knowledge relating
to the activities of an organization. The objective is
to explicitly represent experiential knowledge in an
organization, while allowing its access and re-use by
the organization members for their tasks. For doing
this, conceptual graphs are used. They enable the
users to visualize and understand the details of

knowledge modeling.

Experience Feedback processes (capitalization and
reuse of past solutions) can be analyzed from a
KADS/CommonKADS perspective. In
CommonKADS three layers or levels of knowledge
are considered:
- the domain layer consists of the enumeration of
concepts and their relationships. This level, often
called ontology, materializes the domain knowledge;
- the inference layer can be seen as a library of
problem solving methods and processes described in
a declarative manner;
- the task layer provides a procedural interpretation
of the inference layer.
More recently, a similar perspective was used to
structure the Unified Problem-solving Methods
Language (UPML) [32]. In UPML, three major
component types are defined: task, domain model
and problem solving method (PSM). Moreover,
several bridges enable connections between
components, an ontology being at the core of the
framework to define a terminology and its
properties.
For EF, the Domain layer consists of the domain
ontology (domain knowledge) enriched by the
ontology describing the experience feedback
framework. The Inference layer consists of
mechanisms aiming at capitalizing, retrieving and
reusing experiences. Several techniques are explored
for the search (based on similarity, adaptability) and
for the adaptation phase (transformational,
generative, compositional, hierarchical as explained
in [11] – chapter 8). In this paper the projection
operation of conceptual graph formalism [33] is used
as a common technique for the search and the
adaptation phase (see section 6 for details). Finally,
the Task Layer consists of the actual process of
experience feedback. Capitalization and Exploitation
are the two main sub-processes. Capitalization is
based on the industrial problem solving method as
introduced in section 1.2. Each step is a
capitalization sub-process (event description, context
description, analysis and solution determination).
Exploitation is based on the following sub-processes:
retrieval, adaptation and generalization. These steps
are the core techniques that support the EF problem
solving cycle and have been inspired by the case-
based reasoning cycle [34] [35]. Although CBR can
be considered as very close to EF, it is originally not
regarded as an organizational model for experience
reuse, but mainly as a cognitive model and a
technical architecture (see [11] – chapter 2).
The approach is structured in two steps: firstly,
during knowledge capitalization, there is a formal
modeling of knowledge, rules or heuristic associated
to positive and negative events; afterward, there is
the use of conceptual graphs operations founded on
computing techniques to support the appropriation

and the dissemination of capitalized knowledge.
The activities through which the assessment of this
approach has been carried out are the following (see
figure 2):

• Domain representation: the domain ontology
of the target enterprise or organization is
formalized. This formalization is in itself a
conceptual and terminological clarification
activity during which more or less vague
concepts must be brought to an expression
devoid of any ambiguity. The ontology layer
supports the evolution of vocabularies as it can
define relations between the different concepts
and expresses a community's consensus
knowledge about a domain.

• Capitalization: capitalization involves all the
activities making it possible to add new
information into the Experience Feedback Base.
These activities are organized for the creation of

knowledge that will be the most effective in
supporting the improvement of quality products
and services delivered by the system. This
knowledge describes fundamental facts and
rules coming from the experience feedback and
is generally issued by a pluridisciplinary
committee.

• Knowledge Formalization: the knowledge
analysis requires the translation of cases or
lessons learned of the previous phase into a
formal specification expressed in conceptual
graphs formalism. Based on the formal
reasoning of conceptual graphs, the analysis
techniques should allow for the determination of
consistency (no contradictions) and correctness
(objectives are satisfied) of experiential
knowledge. In section 5, the detailed process is
presented.

Formal
Ontology

Formal
Experience
Feedback

Model

1 - Domain
Representation

3 – Knowledge
Formalization

Actors

Modélisateur 2 – Problem
Solving

Capitalization Framework

Reuse

Fig. 2: Proposed Methodology for experience feedback process

4. Structuring the vocabulary with ontology

An experience feedback system is a knowledge base
containing a set of experiential elements
(characterizing knowledge resulting from the
analysis of the events). The main problem thus
consists in the organization of these elements in
order to be able to enrich them and use them easily.
These experiential elements could effectively be
used only if the different actors share a common
understanding of domain vocabulary. Consequently,
it is necessary to structure the appropriate
vocabulary which will be used to describe each
experiential element.
Traditionally, the characterization of experiential
terms is limited to simple taxonomies that lack
constructs needed by analyst to reason over an
instance representative of domain knowledge.
Ontologies provide [36] powerful constructs with the
ability to share a common understanding of
experience thus enabling people to better reason
over and analyze experiences.

4.1. Definition of Ontology

In philosophy, ontology is the study of the nature of
Being and the essence of things. In the early 1990s
computer scientists, particularly those in Artificial
Intelligence, gave to the term a new, but related,
meaning. It is possible to find in the literature several
definitions of ontology. The most quoted one is
proposed by Gruber [37]: an ontology is a formal,
explicit specification of a shared conceptualization.
This definition identifies four main concepts
involved: an abstract model of a phenomenon termed
“conceptualization”, a precise mathematical
description hints the word “formal”, the precision of
concepts and their relationships clearly defined are
expressed by the term “explicit”, and the existence
of an agreement between ontology users is hinted by
the term “shared” [38].

Some essential aspects of ontologies are:
- they are used to describe a model of a specific

domain,
- their concepts and relations are unambiguously

and formally defined by axioms and definitions
stated in a formal language, such as logic or
some computer-oriented notation (e.g. conceptual
graphs) that can be translated to logic,

- there is a mechanism to organize the concepts by
means of relationships, which might be
hierarchical or non-hierarchical,

- there is an agreement between users of an
ontology in such a way that the meaning of the
concepts is used consistently by all of them.

Intuitively, a conceptualization can be considered as
given by a set of features constraining the structure
of a piece of reality, which an agent uses in order to
isolate and organize relevant objects and relevant
relations [39]. A set of formal constraints, expressed
in a suitable formal language, can therefore be used
to (partially) characterize a conceptualization. An
ontology is a rigorous representation of concepts and
their allowed interactions, with the purpose of
providing an explicit framework in which to
elaborate the experience feedback modeling.

4.2. Roles and Uses of Ontology

Scientific ontologies are being developed and used
in disciplines ranging from biology and medicine
[40] to enterprise modeling [41] and knowledge
management [42]. The role of ontologies as
facilitators of knowledge management is being
praised stronger than more today, especially since
when an important place was attributed to them
inside the vision of Semantic Web [43]. Indeed,
knowledge management as well as e-business [44] or
enterprise application integration [45] [46] are seen
as the areas where the use of ontologies and other
Semantic Web technologies will strongly contribute
to the creation of pragmatic vocabulary allowing
computers and/or humans to co-operate in sharing
information and in solving problems.
Three main roles are devoted to ontologies in
general:

• Communication (humans and organizations):
In order to meaningfully share the information,
an ontology provides a common understanding
to reduce or eliminate conceptual and
terminological confusion. Such an
understanding can help in achieving better
communication between people and
organizations. Indeed, all ontology users agree
on the meaning of involved concepts and their
relationships represented in the model of a
domain. Moreover, the ontologies are used in
the communication with other (external)
systems, such as, e.g. user interfaces or other
(knowledge) systems in a distributed system
[47]. Interfaces of a knowledge system can
make use of ontologies to direct users in their
responses by explaining reasoning behavior in
terms of its ontology [48]. In information

retrieval applications, ontologies serve to
disambiguate user queries, to elaborate
taxonomies of terms or thesaurus in order to
enhance the quality of retrieved results [49]
[50].

• Interoperability (machines and systems):
interoperability among systems or machines
[51] is achieved by translating between different
models, paradigms, languages and software
tools. The shared understanding of domain
ontology is the basis for a formal encoding of
the important entities, attributes, processes and
their inter-relationships in the domain of
interest. For instance, ontologies are relevant to
provide semantic definitions on concepts and
constructs, so they allow the semantic matching
or mediation that achieves interoperability
between enterprise models/tools [52]. The
usefulness of ontologies in agent based systems
can be pointed out as they enable knowledge
interoperation. For example, Orgun and Vu
propose an ontology-based multi-agent system
that provides a framework for interoperability in
heterogeneous medical information systems
[53].

• Reasoning and Problem Solving: The basic
role of ontology in this case is to represent the
knowledge of the domain in order to be able to
achieve reasoning, that is to say, to represent
problems and generate solutions for these
problems. This use is found in many expert
systems (problem solvers) and decision support
systems [54] [55] [56]. In using ontologies for
this role, secondary goals are the creation of
knowledge bases that are reusable, efficient,
explainable, modular, etc. [57]. Indeed, the early
use of ontologies in Artificial Intelligence
research aimed at improving knowledge
engineering by tackling these roles by creating
“well structured” knowledge bases that would
not only solve the problem at hand but be more
maintainable, easier to extend, etc. In this sense,
ontologies are a convenient engineering tool
[58]. This role of ontologies implies the use of
an inference engine that is used to achieve
specific goals.

The main paradigms of languages currently used to
represent ontologies are conceptual graphs [25],
description logics [59] and frame logics (a deductive
and object-oriented formalism [60]). These main
paradigms are complemented by RDF (Resource
Description Framework) [61] and its evolution, the
OWL (Web Ontology Language) [62] mainly
applied in connection with the “Semantic Web”
scheme.

Frame logics are powerful in reasoning about and
representing knowledge, but the flexible higher-

order syntax may lead to problems of stratification
[63]. Description logics have been a successful
attempt to combine well-defined logical semantics
with efficient reasoning, but they suffer the problem
of explaining specialization. Furthermore,
conceptual graphs can be easily translated into the
terminology of some other approaches in knowledge
engineering, such as RDF [64], [65].

4.3. Relevance of conceptual graphs for
experience feedback ontology formalization

In this work, ontology is represented in the
conceptual graph formalism and used as a tool to
support knowledge capitalization and reuse.
Considering the three main roles of ontologies
described above (communication, interoperability,
reasoning and problem solving) a mapping can be
done, describing how conceptual graphs are
appropriate to the ontology role and, furthermore, to
the addressed problematic.
From a communication viewpoint, two essential
properties are seen in the conceptual graph
formalism. The components of the knowledge base,
simple graphs, are easily understandable by an end-
user (a knowledge engineer, or even an expert). The
graphical representation, the mapping to natural
language [66], and the explanation mechanism help
in expressing and understanding knowledge, which
is beneficial for users to construct and manipulate
knowledge. And reasoning mechanisms are easily
understandable too (at least if the graphs are
reasonably small), for two reasons: graph operations
(join, projection, see section 6.3 for details) enable
the end-user to follow reasoning step by step and the
same language is used at interface and computing
levels [67].
From an interoperability viewpoint, the existence
of a standard (such as CoGXML) when the graphs
themselves are exchanged facilitates the connection
of different knowledge systems that are able to
encode or decode conceptual graphs. Some
researchers (for example [68]) suggested using
conceptual graphs as a pivot language to allow the
automatic translation of knowledge structures
between different knowledge representation
formalisms. Moreover, conceptual graph ontology
provides semantic definitions on concepts and
constructs that are important in order to match
semantic interoperability [52]. This advantage has
shown a practical usefulness to support the
cooperative work in a network organization [69].
From a reasoning and problem solving viewpoint,
conceptual graphs are provided with a logical
semantics [25]. General problems associated with
both kinds of conceptual graph based reasoning are
NP-hard [70]. However, some polynomial cases [71]
obtained by restricting the structure of the graphs are
used in real-world knowledge. On the other hand,
considering graphs instead of logical formulas gives

another viewpoint (for instance, some notions like
path, cycle or neighborhood are natural on graphs)
and provides other algorithmic ideas [72].
Conceptual graph formalism provides both a
controlled vocabulary of artifacts in the real world,
captures the relations between them, and supports
various reasoning mechanisms. This vocabulary is
used to construct a formal knowledge representation
of Experience Feedback cases (the experiences) and
lessons learned, then to make some interesting
reasoning tasks as explained in the continuation.

5. Modeling of Experience Feedback Process

5.1. Definition

Among many proposed definitions for "Experience
Feedback", the one given in [5], [17], similar to the
definition of "Lessons learned" given in [18], has
been adopted.
Experience Feedback is a process of knowledge
capitalization and exploitation mainly aimed at
transforming understanding gained by experience
into knowledge.
A lesson learned from experience must be
significant in that it has a real or assumed impact on
operations; valid in that it is factually and
technically correct; and applicable in that it
identifies a specific design, process, or decision that
reduces or eliminates potential failures and mishaps,
or reinforces a positive result.
In this paper, only the experience feedback
capitalization with the aim to capitalize the results of
the experiential knowledge and to learn from it is
studied.

5.2. Experience Feedback Capitalization
Representation

The capitalization stage of Experience Feedback
(EF) process seeks to capture experiential element
available in the organization (including project
experiences, problem-solving expertise, and design
rationale). The motivations is to exploit the
experience acquired from past projects and to keep
some lessons from past to avoid reproduction of
some mistakes.
The input of the EF process is the occurrence of an
unexpected (or “expected” – see section 6.2 –
Definition of support) situation (an event) during the
life cycle of a product, device or process in the
organization. This study only concerns expected
events. So, the event expresses an unexpected failure
and a solving process is set up as soon as it is
detected. For positive events, the rationale of
successes is also considered as a source of lessons
learned but this issue is not considered in this work.
This process corresponds to a sequence of activities
defined according to a process that will lead, in the

best situation, to the resolution of the problem
caused by the event occurrence. This study is based
on a process defined in [17] and adapted to the
addressed problematic. The proposed process (figure
3) is described as follow. First, the event’s context
and the event itself are described. This task is
realized by the operational actors. They can be
assisted by a knowledge engineer but the goal is that
they would be able to capitalize themselves this
information. This aspect can be achieved by the
conceptual graphs formalism presented above (see
section 4). This context will help later on to retrieve
comparable problems in the experience base.
Secondly, an expertise is realized by a committee of
experts of the domain. The goal is to analyze the
problem, to formalize experts analysis, to provide a

solution and, if useful, to capitalize it. This whole
information represents an experience. Thirdly, it may
be judicious to build lessons that will be
systematically used in future similar situations. To
build them, a pluridisciplinary committee has to be
defined in order to treat one or more particular
themes (for instance, quantity of quality problems on
a product). These lessons generalize and reinforce a
set of previous experiences. In order to define a new
experience, domain experts can search similar ones
in the experience base.
Consequently, in the following, any experience will
be described according to four elements: context,
triggering event, analysis and solution. Some lesson
learned can be derived from several experiences.

Event
 Experience s Lessons

Experience
database

Rules
database

Experts of the
domain

Operational
actors

Diffusion Diffusion

INDUSTRIAL PROCESSES

EF base Experience
base

Lessons
learned

Problem solving process

Context

Pluridisciplinary
committee

Event

Fig. 3. Global process to capture experience feedback from an event based on [17]

Another more detailed point of view about this
process is represented on figure 4 which highlights
the information or knowledge reuse (drawn as
dotted arrows). Four main tasks have been
represented: domain representation, context and
event capitalization, analysis and generalization.
The domain representation task is achieved off-line
by experts of the domain. Their role is to build the
formal ontology by means of conceptual graphs.
This task is described in the next section. Its
outcome constitutes the support of the EF process:
the Experience Feedback models. These models can
be seen has components stored in a library as
validated ready-to-use models facilitating reuse
[73]. The second task represents context and event
capitalization: it consists, for the operational actor,
in using predefined EF models to represent the
events as well as their context. Obviously, this
capitalization requires that the event has occurred
and more importantly has been detected. Then, the
analysis of the problem has to be realized, aided by
the previous capitalized experiences. This task is
generally done by experts. The most important

point is to capitalize this analysis within a model of
experience. The last task concerns the
generalization. It consists in building lessons (or
rules) from the experiences previously capitalized
but also from the previous lessons learned. This is
realized by a pluridisciplinary committee and can
not be automated. Obviously, tasks 2 and 3 are
realized more frequently than the generalization
one. Task 2 has to be done as early as it appears;
task 3 is done immediately if the problem needs an
immediate analysis and solution or it can be
postponed to the next meeting of experts (for
instance, a meeting can be planned each week).
Task 4 generally requires several experiences, and
is therefore realized less frequently. For instance,
each month, a pluridisciplinary committee can be
formed in order to treat particular problems (for
instance, recurrent failures on a machine).
Obviously, Experiences and lessons learned consist
of conceptual graphs and they represent the
capitalized knowledge. The next section gives some
definitions about this paradigm and describes how
the formal ontology is built.

Experts

Experience Feedback
base

Capitalization

Support

Event

System 1 - Domain Representation

Formal
Ontology

Ontology
Formalization

Concepts &
Relations

Experts
of d omain

3 - Analysis

Experiences

Lessons
learned

Reusing

Reusing

4 - Generalization

Pluridisciplinary
Committee

Operational
actors

2 – Context and event
capitalization

Experience
Feedback

Models

Conceptual
Graphs

Support

Fig. 4: Formalization of experience feedback process

6. Knowledge formalization with conceptual
graphs

The conceptual graphs are a knowledge
representation language, introduced by John Sowa in
[25] and extended in [28]. Such language permits at
the same time to define a vocabulary (i.e. ontology)
and to use this vocabulary to conceptualize facts.
Conceptual graphs enable to represent complete
first-order, modal, and higher-order logics, but they
were developed as a more intuitive notation for
logic. Conceptual Graphs can be considered as a
compromise representation between a formal
language and a graphical language because it is
visual and has a range of reasoning processes [33].
The attractive features of conceptual graphs have
been noted previously by other knowledge
engineering researchers who are using them in
applications [49], [69], [74], [75], [76]. These
features include the ability to represent complex
relationships among entities; to express selection
constraints for any given entity; to map conceptual
graphs onto database representations; and to map
onto other formal systems, such as first-order
predicate calculus.

6.1. Construction of the Formal Ontology

The ontology is the heart of any knowledge
description: knowledge is intimately related to the

ontology, since it is necessarily expressed in terms of
this ontology. The ontological objects are usually
described as a set of concepts and a set of relations
between concepts. These sets may be ordered to
form a taxonomy of concepts types or relations
types.
In the Conceptual Graph (CG) formalism, this
knowledge is encoded in the support that includes
the following sets:
- The Concept Type Lattice (TC) describes all

concept types that may be used in the concept
tokens of conceptual graph representations. The
Concept Type Lattice is a partially ordered finite
set of concept types.

- The Relations Type Lattice (TR) too describes
the finite set of relations types that is structured
by a partial order, forming a hierarchic structure.

Both type concepts and relations are ordered by a
subsumption link showing their inheritance
relationships. The interpretation of the subsumption
link is that the extension (i.e. the set of objects
characterized by the type) of a concept type (e.g.
Machine) is a subset of the extension of another
concept type (e.g. Ressource).
To a certain extent, the type used for concepts and
relations must be precisely defined in the formal
ontology where the terms may have associated
constraints (e.g. signatures determining the link
prerequisites for the relation types) and definitions

(e.g. definitions of necessary and/or sufficient
conditions). In the rest of the paper, the terms
"support" and "ontology" are used alternatively: the
former is the Conceptual Graph implementation of
the latter (see figure 4 for an example).

6.2. Conceptual graphs

Setting up the support is a preliminary task to build a
knowledge based application using Conceptual
Graphs [28], [77].

Definition 1: Support
A support is a four-tuple S = (TC,, TR,, I, τ).
TC and TR are two partially ordered finite sets,
respectively of concept types and relation types. TC
possesses a greater element, called the universal
type, and denoted by T. Relation types may be of any
arity greater or equal to 1. Only relation types with
same arity are comparable. I is the set of individual
markers. TC, TR and I are pairwise disjoint. τ is a
mapping from I to TC. The generic marker is
denoted by *, where * ∉ I. The set I ∪ {*} is
partially ordered in the following way: * is the
greatest element and elements of I are pairwise non-
comparable.
The partial orders on types are interpreted as
specialization relations (t ≤ t′ is read as t is a
specialization of t′).

Definition 2: Simple Graph
A simple Conceptual Graph is a finite, directed,
bipartite graph consisting of concept nodes (denoted
as boxes), which are connected with conceptual
relation nodes (denoted as circles). In the alternative
linear notation, concept nodes are written within
square brackets, while conceptual relation nodes are
denoted within brackets.
A conceptual relation binds two or more concepts
according to the following diagram [C1]→(relation’s
name)→ [C2] (means ‘C1 is linked to C2 by this
relation’s name’). For example,
[Material]→(Attr)→[Hardness] means Material "has
an" attribute "which is" Hardness. Each relation has
a signature, which fixes its arity (the number of
arguments it takes) and gives the maximum types of
concept available, to which a relation of the type can
relate.
The nested Conceptual Graphs [33] enables
association of any concept node with a partial
internal description. In addition nesting allows to
create several representation levels, to organise these
levels of detail into a hierarchy and thus to embed a
conceptual graph in the marker of a concept by
adding internal information to it. An important
advantage of nested graph models is the option of
partitioning the reasoning tasks into separate
metalevel stages, each of which can be axiomatized
in classical first-order logic. For that, a mathematical

operator is defined that translates conceptual graphs
into formulas in the first-order predicate calculus
(relations become n-ary predicates, concepts become
unary predicates, individual markers become
constants and generic markers become existentially
quantified variables). However, the underlying
structure of the graph theory can support a broad
variety of inferences that goes far beyond logical
deduction. All properties on conceptual graphs
depend on their own structure and on the ontology
they share. The study of theirs manipulations by a
knowledge base relies on conceptual graphs
operations which are considered to be the backbone
of the reasoning system.

6.3. Conceptual graphs operations

Reasoning relies on a standard operation of CG
called projection [25]. Conceptual Graphs are
logically founded, with projection being sound and
complete with respect to deduction in first-order
logic (FOL) [70]. In fact, the projection extracts a
subgraph from a given graph by applying a sequence
of specialization rules. More formally, a projection π
from a graph G1 to a graph G2 is defined with the
following properties:
- π is a mapping from the nodes of G1 to the nodes

of G2 which preserves edges, i.e., if xy is an edge
of G1 then π(x)π(y) is an edge of G2.

- π may specialize the labels of concept and
relation nodes. For each concept c in G1, π(c) is a
concept in π(G1) such that type(π(c)) ≤ type(c)
and if c is an individual concept, then
marker(π(c)) = marker(c). For each relation node
r in G1, π(r) is a relation node in π(G1) such that
type(π (r)) ≤ type(r).

The existence of a projection from a CG G1 to a CG
G2 means that the knowledge represented by G1
(request graph) is deducible from the knowledge
represented by G2 (context graph), as shown in
figure 5. In this picture a projection is feasible,
because the concept "Machine" is a specialization of
concept "Resource" and the "tuning activity" is a
specific "activity". So, the only one projection
(Π(G1)) is encircled with a dot line. The context
graph can be interpreted as “There is machine which
is doing an activity of turning on a metal which is in
titanium”. The request can be interpreted as “Is there
a resource performing an activity?”. The projection
graph gives the response which can be interpreted as
“There is machine which is doing an activity of
turning”. Conceptual Graph projection can be
extended with an implementation of a depth-
attenuated distance (between types in the ontology)
or graph transformations allowing approximate
search [49], [78].
The question of the existence of a projection of a
graph into another graph is NP-complete [70].
However there are polynomial cases, for instance the

question of the existence of a projection of an
acyclic graph into a general graph [71]. A practical
interest of this result is that acyclic graphs seem to

be very frequent in conceptual graph applications
[49], [69], [76].

Figure 5. Application of a projection operation

The projection operation is a building block for
more complex kinds of knowledge reasoning, like
graph constraints and graph rules [33].
A graph rule has the following form: “if condition
then conclusion” (where condition and conclusion
are Conceptual graphs sharing the co-referents
nodes). The graph rule is used in the following
classical way: given a simple graph, if the condition
of the rule projects to the graph, then the information
contained in the conclusion is added to the graph.
Each rule has a life duration that depends on the
objective to be attained; when a context evolves,
consistent knowledge that produce usable rules must
be reviewed by competent actors.

7. Methodology for Experience Feedback using

conceptual graphs

7.1. Ontology

The formal ontology used in this work for
experience feedback is represented on figure 6. The
main advantage of this ontology is to propose jointly
a support for experience feedback and a support for
the domain. In order to make enterprises
interoperate, this particularity is important because
the manner to model and capitalize knowledge is
integrated to the ontology as well as the domain
itself. In the proposed example, the ontology of the
domain addresses a manufacturing environment. The
concept type “feedback_object” can be specialized
into “Activity”, “Product”, “Process”, “Resource” or
“Competency”. The “Resource” concept type can be
also specialized. The experience feedback domain is
described by means of the “Experience_Element”

concept type that can be specialized into “Event”,
“Context”, “Analysis” and “Solution” concept types.
These four concepts are the four pillars of an
experience and they are used to build conceptual
graphs (see next section).
The “Event” concept type can be specialized into
“negative_event” or “positive_event” concepts type.
In the rest of this paper, only negative events are
considered. A negative event is generally unexpected
and has a negative impact on the performance of the
organization. In the proposed example, it can be
specialized into “Breaking”, “Start”, “Late”, etc.
Such a negative event can be part of an experience if
it is possible to capitalize this event with its concept
type, to analyze the root causes and then, to
formalize and capitalize the solution. Positive events
correspond to situations where products, processes
or services are good (or even better than expected).
These situations are more difficult to detect and to
formalize. For instance, a project scenario leading to
good results with respect to one or more objectives
in a given context can be considered as a positive
event and can be capitalized with the proposed
framework. Generally, these events are difficult to
highlight because decision makers do not spend time
to analyze standard and positive situations.
The second part of the support concerns relations
types. It gathers some “high level” relation types like
“Temporal”, “Spatial”, “Usual”, “Logic” and
“Experience_Relation” ones. The specialization of
the relation type “Experience_Relation” (“Require”,
“Generate”, “Concern”, “Belong”) enables to gather
into conceptual graphs several
“Experience_Element” concept types.

Resource agent Activity

project concept by
individual marker

Project
sub - graph

object

Machine Activity: turning agent

project concept
by sub-typing

Resource Activity Resource Activity

Projection
-

Metal: titanium Context Graph (G2)

Machine Activity: turning Machine Activity: turning ΠΠΠΠ(G1)

Request Graph (G1)

Concept types

Universal

Temporal (Universal, Universal)

Is_After (Activity, Activity)

Is_Before (Activity, Activity)

Is_Paralell (Activity, Activity)

Require (Event, Analysis)

Generate (Analysis, Solution)

Concern (Resource, Activity)

Element_Of (Universal, Universal)

Support (Feedback_Object, Experience)

Usual (Universal, Universal)

Agent (Universal, Universal)

Input (Activity, Product)

Output (Activity, Product)

Experience_Relation (Universal, Universal)

Object (Universal, Universal)

Attr (Universal, Attributes)

Has (Universal, Universal)

Spatial (Universal, Universal)

In (Universal, Universal)

Out (Universal, Universal)

Logic (Universal, Universal)

Is_Included (Universal, Universal)

Implies (Universal, Universal)

Belong (Event, Context)

Incompatible (Universal, Universal)

 Relation types

Universal

Feedback_Object

Activity
Product
Process
Resource

Actor
Tool
Algorithm
Machine

Experience_Element

Solution
Context
Analysis
Event

Positive_Event
Negative_event

Breaking

Start

Late

Stop

Loss

Cut

Experience

Competency

Non_Technical_Competency
Technical_Competency

Trade_Competency
Product_Competency

Action

Use
Replace

Attributes

Material

Hardness

Date

Figure 6. Formal ontology (lattice of concept and relation types) in conceptual graph

7.2. Generic conceptual graph model of an
experience

Building a Conceptual Graph (CG) depends on the
possible labels that can be used, i.e. on the sets of
types, relations, and markers. These sets constitute
the ontology of a Conceptual Graph-based
representation. The framework introduced here
therefore mainly consists of a set of canonical
conceptual graphs for experience feedback
representation. These graphs are considered to be the
backbone of the experience feedback formalization.
Considering the general Experience Feedback
process of figure 4, a framework describing an
experience in a generic manner is required. When an
event occurs, it is necessary to formalize this event
and to precise the context in which the event has
occurred. Clearly, in a continuous improvement
context [1], it is not sufficient and the event has to be
analyzed according to its context (search of causes,
evaluation of effects on the system) and a solution
has to be proposed. Most companies nowadays use

this procedure. Each negative event (machine failure,
quality problem on a product, etc.) has to be treated
very quickly in order to avoid its propagation all
along the process. In this context of reactivity, the
analysis has to be quickly realized and can lead to a
corrective solution. Decision makers need tools
favoring rapid responses to problems, and in this
respect, experience feedback is a good solution. This
methodology enables to search in an experience base
if similar experiences have been capitalized. From
the capitalized experiences, analysis and solutions
can be extracted, adapted to the current problem and,
finally, also capitalized creating a new experience.
Therefore, one contribution consists in a proposition
of a conceptual graph based model for experiences,
enabling the actors both to react more quickly and to
capitalize more easily their knowledge. The generic
conceptual graph of figure 7 uses nested CG for the
representation of a generic experience. The CoGUI
(Conceptual Graphs Graphical User Interface) tool
[67] has been used in order to define the ontology
and to build the graphs.

Experience: *

Description

Analysis: *

Description

Event: *
Description

Context: *

DescriptionBelong
21

Require

2

1

Solution: *

DescriptionGenerate 21

Figure 7. Generic experience GC

Five concepts coming from the formal ontology
(figure 5) are used: Event, Context, Analysis and
Solution. Three relations are used: Belong, Require
and Generate. This generic graph can be interpreted
in formal language as: An experience has a
description. This description is: there is an event
belonging to a context, this event requires an
analysis and the analysis generates a solution. The
concepts Event, Context, Analysis and Solution can
be described by means of nested CG. This generic
model has to be instantiated each time an event
occurs on the system. The instantiation of the generic
GC consists in defining the markers and the content
of the nested graphs descriptions. The marker of an
experience concept enables to differentiate
experiences. For instance: “[Experience: Exp1]”
means that there exists an experience Exp1.
Implicitly, this experience has a description which
has to be described by a CG. The markers of the
Event and Context concepts have to be defined when
the event and its context are modeled by means of
CG. A marker different to the generic one (“*”) for
the event concept means that there is a CG
describing this Event. In a similar way, the Analysis
marker and the Solution marker are defined when the
description of each one is provided.
The main difficulty during the process of knowledge
capitalization is to know which concepts are needed
for the different descriptions so as to have a
comprehensive knowledge. A possibility consists in
adding to certain descriptions of the generic CG
(mainly the Event and Context descriptions) a nested
predefined CG. This nested CG can be seen as the
minimum set of required attributes with the
appropriated relations and edges. Each attribute is
represented by a concept type. For instance, to
describe the context of an event in an industrial
workshop environment, the following minimum set
of concepts can be required: {Machine, Actor,
Activity, Product, Tool}. Therefore, the generic
model has to be enriched (specialized) by these
concepts. An example of predefined CG is proposed
on the figure 8. It concerns the contextual
description in an industrial workshop environment.

Product: *

Activity: * Use: *

Input

Agent2

2

1

1

Tool: *

Object

2

1

Actor: *

Object

2

1

Machine: *

Object

2

1

Figure 8. Example of generic CG for the context’s description

The conceptual graph of figure 8 can be interpreted
in formal language as: a Product is the input of an
activity; this activity uses a Machine, an Actor and a
Tool.
The main advantage of this generic graph is that
experts in charge of the problem solving and the
knowledge capitalization are guided by this
framework. They are bound to use all the concepts of
the minimum set. In return, this framework is very
specialized to a particular domain. A flexible
solution consists of further predefined nested CG
(available on a library of generic conceptual graphs).
Each one is adapted to a particular domain of the
enterprise for which an experience feedback process
is effective (production, quality, maintenance,
project/process management, etc.)
For the description of events, a predefined CG is
proposed as well (figure 9).

Negative_Event: *

1

2

Object

Feedback_Object: *

Date: *

2

1 Attr

Figure 9. Example of generic CG for the event’s description

The characteristic of the support to have a partial
order between two concepts is used to obtain a
sufficient generic description of the event. The
translation into formal language is: A feedback
object is concerned by a negative event occurred at
a date. A feedback object is a generic concept that
can be specialized (into Activity, Process, Product or
Resource – see the ontology on figure 5). It gathers
all the concepts for which an experience feedback is
possible. A negative event can be also specialized
(Breaking, Stop, Start, Loss, Cut, Late, etc.).
For the analysis description and the solution
description, no generic nested CG is proposed. The
reason is that it is impossible to know in advance
what can be the problem analysis and its solution.
On the other hand, this step could be aided by
experience feedback. If similar events have already

occurred, experts can use the previous analysis as a
framework, as well as the solution.

7.3. Process of instantiation of a new
experience

The process of instantiation of a generic experience
is as follow. After an event is detected, the actors in
charge of the resolution of the problem have to
instantiate a generic experience. Firstly, a marker is
given to the Experience concept. Secondly, the
Event has to be described by means of the associated
predefined nested conceptual graph of figure 8,
using the ontology. In parallel, the marker of the
Event has to be defined. The Feedback_object
concept and the Negative_event concept have to be
specialized into the right ones. The markers of the
two concepts have to be defined as well as the
marker of the Date concept. Thirdly, the Context has
to be described and its marker has to be defined. The
next steps consist of making the analysis, finding a
solution, capitalizing the experience and carrying out
the solution. The actors have to search in the
experience base if a similar event has already
occurred in the past. Therefore, a request has to be
realized in the experience base to retrieve the
concerned experiences if they exist. In order to make
this action, the projection operation is used. This
operation is described in the next paragraph. If one
or more experiences are found, they have to be
integrated by the experts to build the analysis and to
define a solution to the current problem. The
analysis and the solution are inspired and adapted
from the previously capitalized experiences. Clearly,
if no experiences are found, the experts must
perform the analysis from scratch and find a solution
without any feedback.

7.4. Similar experiences retrieval

As presented in section 7.2, previous capitalized
experiences are used to help the expert to solve the
present problem. Reasoning mechanisms (projection,
mappings or transformations [33]) of conceptual
graphs can help to cover some problems solving
methods closely or completely and to identify their
relevance for the purpose of providing valuable
results for a user (operator or manager) facing the
problem. Particularly, the projection operation [71]
defines a generalization/specialization relation over
conceptual graphs and may slice the knowledge
model to remove parts unrelated to the studied
problem. Using the projection, the reasoning system

is able to find not only descriptions of experiences
that are annotated by some classes of normalized
employed concepts and relationships but also those
annotated by subtypes of these classes. Besides, to
search with imprecise and/or incomplete experiences
or to answer a vague query, approximate projections
[49], [78], [79] can be used. Considering an event
and its context modeled by means of GC, experts
have to retrieve from the experience base
experiences with similar events and/or context. To
realize that search, the projection operation (see §
6.3) is used. Therefore, a request has to be defined,
using the conceptual graph paradigm. The request
content is directly defined by the experts. It can be a
description of the event but also a description of its
context (or a partial description of the context).
Therefore, a projection of the request graph on the
capitalized experiences has to be realized. The
generic CG of figure 6 is used to define the request.
For the request, the descriptions of the event and its
context have not to be very detailed. A set of
concepts can be sufficient. In that case, the
projection of the request on a CG modeling an
experience enables to know if these concepts are
present or not in the descriptions of the context or
event. If all these concepts are present then there is
at least one projection. Therefore, the concerned
experience can be an interesting case and the
analysis and solution can be helpful for the expert.

7.5. Example of experience

In order to illustrate the proposition, one suggests
the example of a complete experience (figure 10).
The conceptual graph is made according to the
ontology proposed at paragraph 6.2. In formal
language, this graph can be interpreted as follows.
The experience Exp1 has a description: The event
Evt1 belongs to the context C1 and requires the
analysis A1. This analysis generates the Solution S1.
The event description is: the Tool Standard Milling
Cutter Phi20 is broken on 2006/05/22. The context
description is: the product Px_10 is the input of the
activity Milling 010 which uses the actor Robert, the
machine Huron_Kx_10 and the tool Standard
Milling Cutter Phi20. The analysis description is:
the product Px_10 is in Titanium with a hardness
incompatible with the Tool Standard Milling Cutter
Phi20. The solution description is: Replace the Tool
Standard Milling Cutter Phi20 by Tool Carburized
Milling Cutter Phi20. This conceptual graph can be
stored in the experience base in order to be reused.

Experience: Exp1

Description

Analysis: A1

Description

Event: Evt1

Description

Tool: Standard milling cutter Phi20

Breaking: * Date: 2007/05/22

Object

Attr

1

2

1 2

Context: C1

Description

Product: Px_10

Activity: Milling Use: *

Input

Agent
2

2

1

1

Tool: Standard milling cutter Phi20

Object

2

1

Actor: Robert

Object

2

1

Machine: Huron_Kx10

Object

2

1Belong
21

Product: Px_10

Tool: Standard milling cutter Phi20

Material: Titanium

Hardness: *

Attr
21

Attr

2

1

Incompatible
12

Require
2

1

Solution: S1

Description

Replace: *

Tool: Carburized milling cutter Phi20

Object 21

By

2

1Generate
21

Tool: Standard milling cutter Phi20

Figure 10. Example of a complete experience

7.6. Example of experience feedback

Considering the experience of figure 10 and a new
event occurring in its context C025, the generic
experience GC is instantiated with the marker Exp2.
The event is described by the Event concept (marker
Evt025) and its nested graph description (figure 11).
The difference with the event Evt1 is the marker of
the Tool concept (Turning versus Milling) and also
the date of occurrence. The context C025 has the
following description (figure 12).
In order to describe the analysis and the solution, the
expert can make a projection operation on the
experiences previously capitalized. There is only one
experience (figure 10) capitalized in the experience
base for this very simple example.

Event: Evt025

Description

Tool: Standard turning cutter

Breaking: * Date: 2007/06/28

Object

Attr

1

2

1 2

Figure 11. New event concept with its description

Context: C025

Description

Product: Py_50

Activity: Turning Use: *

Input

Agent
2

2

1

1

Tool: Standard turning cutter

Object

2

1

Actor: Roger

2

1

Machine: T_105

Object

2

1

Object

Figure 12. New context concept with its description

The request can be described by means of the
following conceptual graph (figure 13).

Experience: *

Description

Analysis: *

Description

Event: *
Description

Tool: *

Breaking: *

1
2

Context: *
DescriptionBelong

2
1

Require

2

1

Solution: *

DescriptionGenerate 21

Object

Figure 13. Request CG

This request is interpreted as: Is there an experience
where the event’s description is about a Tool
breaking and where the analysis and the solution
have descriptions? Therefore, the request CG is

projected on the experience Exp1.
The projection is represented on the figure 14.

Experience: Exp1

Description

Analysis: A1

Description

Event: Evt1
Description

Tool: Standard milling cutter Phi20

Breaking: *

1

2
Context: C1

Description

Belong

2

1

Require

2

1

Solution: S1

DescriptionGenerate 21

Object

Figure 14. Projection of the request on the Experience Exp1

This response is interpreted as: The experience Exp1
concerns the event Evt1, the analysis A1 and the
solution S1. The event’s description concerns the
breaking of the tool “Standard milling Cutter
Phi20”. This experience previously capitalized does
not concern the same tool (milling and not turning
one), but the solution can be useful for the expert to
find a solution. The response only points out that the
experience Exp1 seems to be useful with respect to
the request. The expert has to explore the experience
Exp1 in order to find (if possible) a solution to his
problem. Therefore, the experience Exp2 can be
entirely defined, adapting its analysis and its solution
concepts. Let us point out that an implementation in
Prolog+CG is currently carried out. “Prolog+CG is
a conceptual and an object-oriented extension of
Prolog, a standard programming language in
Artificial Intelligence. Conceptual Graphs can be
used to represent goals and can be used and
manipulated as basic data structures, with
operations like maximal join, projection (or more
precisly subsumption), generalization and
unification operations.” [80]. The implementation of
the example may be achieved as follows:

a) Description of the ontology

The concept type hierarchy is described using the
specialization operator (>).

Universal >Feedback_Object, Experience_Element, Action, Attributes,
Experience.
Experience_Element > Solution, Context, Analysis, Event.
Action > Use, Replace.
Attribute > Material, Hardness, Date
Competence > Technical_Competence, Non_Technical_Competence.
Feedback_Object > Resource, Activity, Product, Process.
Event > Positive_Event, Negative_Event.
Negative_Event > Cut, Late, Loss, Stop, Start, Breaking.
Technical_Competence > Product_Competence, Trade_Competence.
Resource > Tool, Actor, Machine, Algorithm.

b) Description of an experience

An experience is a conceptual graph made of four

sub-graphs (Event, Context, Analysis and Solution).
All sub-graphs are described separately and gathered
thanks to the expression written in bold. Here,
conceptual graphs are described with the linear
notation in which concepts are represented by square
brackets instead of boxes, and the conceptual
relations are represented by parentheses instead of
circles:

experience(_Exp, X) :-
 desc(_Exp,[Event : _E = E]),
 desc (_Exp,[Context : _C = C]),
 desc (_Exp,[Analysis : _A = A]),
 desc (_Exp,[Solution : _S = S]),

eq(X , [Solution : _S = S]<-Generate-[Analysis : _A =
A]<-Require-[Event : _E = E]-Belong->[Context : _C =
C]).

desc (exp1,[Event : Event1 =
 [Tool:Std_Phi20]-Obj->[Breaking]-Attr->[Date:zerotrois]]).

desc (exp1,[Context:Context1=
 [Product:Px10]<-Input-[Activity:Milling_10]-
 -Agnt->[Use]-
 -Obj->[Actor:Robert],
 -Obj->[Machine:Huron],
 -Obj->[Tool: Standard_milling_cutter]]).

desc (exp1,[Analysis:Analysis1=

[Product:Px10]-Attr->[Material:Titanium]-Attr->[Hardness]-
Incomp->[Tool:Standard_milling_cutter]]).

desc (exp1,[Solution:Solution1=

[Replace]-Obj->[Tool:Standard_milling_cutter]-By-
>[Tool:Carburized_milling_cutter]]).

c) Description of a query

A query is described by a name (query1) and an
associated conceptual graph.

query(query1,[Event : _ =[Tool]-Obj->[Breaking]]).

d) Description of a search method based on
projection (subsumption)

This method is based on the projection
(subsumption) operation. The idea is to check for
each experience of the experience base if it matches
the query and to return the context of relevant
experiences. The operation “subsume(A, B, C)”
checks that A subsumes B and returns in C the image
of A in B (the sub-graph of B that is isomorph to A).

find_context(Q,R) :-

experience(E,_E), // Get experiences
query(Q,_Q), // Get the CG corresponding to the query
subsume(_Q,_E,_X), // Find experiences that match the query
subsume([Context],_E,R). // Get context of relevant experiences

7.7. Lesson learned

The next step of the model concerns the experience
generalization (lesson learned). Periodically, an
expert committee analyzes the experience base in
order to generalize the knowledge capitalized during

the experience feedback process described into the
section 6. This process of generalization aims at
preventing the occurrence of negative events. The
process consists in searching into the experience
base the experiences which contain knowledge about
the theme treated by the committee.
Therefore, a request has to be instantiated and a
projection operation carried out on the entire
experience base. The set of retrieved experiences can
contain sufficient knowledge for rule generalization.
It is important to notice that this process of
generalization is not an automatic one. Its role is
only to aid the experts to make appropriate decisions
(to define the lessons). The advantage of this process
is to capitalize the knowledge of experts in a
structured way, enabling computer assistance to be
more relevant.
A lesson can be described by means of two CG:
hypothesis and conclusion. An example of rule is
proposed on figure 15.

Product: *x

Activity: * Use: *

Input

Agent
2

2

1

1

Tool: Standard milling cutter Phi20

Object

2

1

Product: *x Tool: *yIncompatible
21

Replace: * Tool: *yObject
2 1

Tool: Carburized milling cutter Phi20

By2
1

Coreference
link

Coreference
links

Material: TitaniumAttr 21

Hypothesis

Conclusion

Figure 15. Example of CG of lesson learned

It can be interpreted as: If a product *x is in titanium
and it is the input of an activity using the Tool
Standard milling cutter Phi20, then:
i) the product *x is incompatible with the tool
Standard milling cutter Phi20;
ii) this tool has to be replaced by the tool
Carburized milling cutter Phi20.

The conclusion part of the CG lesson learned of this
example is constituted of two CGs. The first one (i)
corresponds to a corrective proposition; the second
(ii) is rather a preventive one enabling to avoid the
occurrence of the negative event (tool breaking).

8. Conclusion

Based on an experience feedback process model, this
paper takes conceptual graph implementation of the
domain ontology as a framework for experience

feedback processes formalization and knowledge
reasoning. This framework is defined considering
requirements about interoperability of networked
organizations within a global continuous
improvement process.
The main contributions of this paper are:
i) A methodology (the Event-Context-Analysis-
Solution-Lesson framework and its reification using
conceptual graphs) suitable for effective description
of experience feedback artifacts. Thus experiences
acquired from past contexts and inducing lessons can
be used to improve industrial activities within a
continuous improvement process. This methodology
is based on the idea that interoperability can be
facilitated if different actors have guidelines for
knowledge capitalization and exploitation using a
common ontology. Therefore, these guidelines have
five pillars:
- the library of reusable Experience Feedback
models based on the conceptual graphs paradigm;
- the experience structure ;
- the methodology integration within a continuous
improvement process well understood and accepted
in enterprises;
- the strong theoretical background as the operator of
projection in conceptual graphs very suitable for
reasoning in a problem solving context;
- tools as Prolog+CG very suitable for artificial
intelligence fields and particularly interesting as
support in the proposed methodology for reasoning.
ii) A formal ontology that is “machine
understandable”, in such a way that it enables
making statements and asking queries about a
particular domain due to the use of a precise
conceptualization, which describes entities and their
relationships. Consequently, domain ontology can be
used in capitalization and exploitation of experience
feedback processes.
iii) The reasoning system relies on a set of graph
transformations; an original feature is that it
enables graphical illustration of reasoning for the
end-user, since lessons learned can be directly
visualized on the conceptual graph. So the graph
structure can be exploited to enhance the knowledge
modeling and adapt a relevant experience given by
the users.
The proposed methodology enables to capitalize and
to share knowledge about problem solving. This
aspect participates to integration and to
interoperability because the knowledge is necessarily
distributed among further actors or entities. So, two
or more enterprises gathered with a common goal of
performance can better interoperate if they are able
to deploy a wide continuous improvement
methodology using a predefined framework based on
a common ontology about the domain and a common
ontology about the knowledge engineering.
Obviously, this methodology is validated only on a
very simple example and needs to be evaluated on

real and complex industrial contexts. For future work
we wish to focus on an experience modeling closer
to expert’s natural expression, for instance relying on
the explicit representation and management of fuzzy
knowledge in conceptual graphs [79]. In order to
help non-technical end user with practical guidelines
as to how such graphs should be built, it is necessary
to study the role and impact of domain knowledge
[81]. Since many new applications have the same
requirements as earlier ones, one possibility is to
create generic domain properties as templates for
requirements of certain classes of applications [82].
This would be very useful for the end-users in graphs
manipulation by providing sets of predefined
conceptual graphs for experience feedback
processes.
The proposed approach aims at the same objective
as case-based reasoning, but some standard
vocabularies for case description are needed, which
ensure the success of case interchange and
distributed case-based reasoning. Comparing with
traditional case representations (free-text format
[83], object-oriented techniques [84], etc), this work
has the advantages of enriched semantic
representation and better integration with
interoperability efforts. Meanwhile, several XML-
based case representation languages such as CBML
[85] and OML [11] have recently been introduced
into the CBR community, in order to facilitate the
storage and distribution of case data over a network
and possible interoperability with non-CBR systems.
Thus, the research direction aiming at
interoperability between Experience Feedback
formalization using conceptual graphs and CBR
systems is worthy of continued investigation.

9. Bibliography

[1] Zaraté P., Munoz M., Soubie J.L., Houé R.
Knowledge Management Systems: A process
oriented view. Cybernetics and Systems Analysis,
Springer Verlag, V. 41 N. 2, p. 274-277, 2005.
[2] Vernadat F. B., Interoperable enterprise systems:
Principles, concepts and methods, Annual Reviews
in Control, in press,
doi:10.1016/j.arcontrol.2007.03.004, 2007.
[3] IEEE standard computer dictionary: A
compilation of IEEE standard computer glossaries.
New York, NY: Institute of Electrical and
Electronics Engineers, 1990.
[4] Viel S., Coudert T., Geneste L., Cherencq F.
Proposition of a multi co-operating experience
feedback processes architecture, IFAC MCPL’07, p.
79-84, September 27-30, 2007, Sibiu, Romania.
[5] Rakoto H. Intégration du Retour d’Expérience
dans les processus industriels – Application à
Alstom Transport (in French). PhD thesis, National
Polytechnic Institute of Toulouse (France), October
2004.
[6] Whitman LE., Panetto H., The missing link:

Culture and language barriers to interoperability,
Annual Review in Control, Volume 30, p.233-241,
2006.
[7] Zorn T.E. and Taylor J.R. Knowledge
management and/as organizational communication.
In D. Tourish and O. Hargie (Eds.), Key Issues in
Organizational Communication. London and New
York: Routledge. ISBN 0415260930. Zorn and
Taylor (pp 98-99) distinguish four uses of the term
"knowledge management", 2004.
[8] Easterby-Smith M., Lyles M. A. (editors). The
Blackwell Handbook of Organizational Learning and
Knowledge Management, Oxford, Blackwell
Publishing, 2003.
[9] Lebowitz J. Knowledge Management Handbook,
CRC Press, 1999.
[10] Dalkir K. Knowledge Management In Theory
and Practice. Amsterdam; Boston :
Elsevier/Butterworth Heinemann, June 2005.
[11] Bergmann R. Experience Management:
Foundations, Development Methodology, and
Internet-Based Applications , volume 2432 of LNAI
(Lecture Notes in Artificial Intelligence), Springer,
2002.
[12] Kolb D. Experiential learning: Experience as
the source of learning and development. Englewood
Cliffs, N.J.: Prentice Hall, 1984.
[13] Weber R., Aha D.W., Becerra-Fernandez I.
Intelligent lessons learned systems. Expert Systems
with Applications, Volume 20, Issue 1, p. 17-34,
2001.
[14] Faure A., Bisson G. Modeling the experience
feedback loop to improve knowledge base reuse in
industrial environment. Proceedings of KAW 99,
Twelfth Workshop on Knowledge Acquisition,
Modeling and Management, Banff, Canada, 1999.
[15] Schreiber G., Akkermans H., Anjewierden A.,
Hoog R.d., Shadbolt N., Velde W.v.d., Wielinga B.
Knowledge engineering and management. The MIT
Press, Cambridge, 2000.
[16] Duribreux M., Caulier P., Houriea B., Faroux
DA. Elicitation and Analysis of Expert Knowledge
on the Operation of Gas Distribution Networks.
University of Kassel, Kassel, Germany, 1993.
[17] Hermosillo Worley J., Rakoto H., Grabot B.,
Geneste L. A competence approach in the
experience feedback process. In Integrating Human
Aspects in Production Management, IFIP
International Federation for Information Processing
series, Volume 160, pp 220-235, edited by Zulch G.,
Jagdev H.S and Stock P., Springer-Verlag, New
York, USA, 2005.
[18] Weber RO., Aha DW. Intelligent delivery of
military lessons learned. Decision Support Systems,
Volume 34, Issue 3, February 2003, p. 287-304,
2003.
[19] Eck, Engelfriet, Fensel, van Harmelen, Venema
and Willems. A survey of languages for specifying
dynamics: a knowledge engineering perspective.

IEEE Transactions on Knowledge and Data
Engineering, Vol.13, N°.3 May/June 2001.
[20] Pierret-Golbreich C., Talon X., TFL: An
Algebraic Language to Specify the Dynamic
Behaviour of Knowledge-Based Systems. The
Knowledge Eng. Rev., vol. 11, no. 3, p. 253-280,
1996.
[21] Abrial JR. The B-Book: Assigning Programs to
Meanings, Cambridge University Press:
Cambridge,UK, 2005.
[22] Brazier FMT., Treur J., Wijngaards NJE.,
Willems M. Temporal Semantics of Compositional
Task Models and Problem Solving Methods, Data
and Knowledge Eng., vol. 29, no. 1, p. 17-42, 1999.
[23] David H. Statecharts: A visual formalism for
complex systems. Science of Computer
Programming, 8:231-274, 1987.
[24] Jungclaus R., Saake G., Hartmann T., Sernadas
C. Troll: A Language for Object-Oriented
Specification of Information Systems, ACM Trans.
Information Systems, vol. 14, p. 175-211, 1996.
[25] Sowa JF. Conceptual Structures: Information
Processing in Mind and Machine, Addison-Wesley
Publishing Company, Reading, MA, 1984.
[26] Baader F. Logic-based knowledge
representation. In MJ Wooldridge and M.Veloso
editors, Artificial Intelligence Today, Recent Trends
and Developments, number 1600, in Lecture Notes
in Computer Science, p. 13-41. Springer Verlag,
1999.
[27] The REVISE project. A Purpose Driven
Method for Language Comparison. Proceedings of
the 8th European Knowledge Acquisition Workshop
(EKAW’96) N. Shadbolt and K.O’Hara (eds.),
LNAI 1076, p.66-81, Springer Verlag, 1996.
[28] Sowa JF. Knowledge Representation:
Logical, Philosophical, and computational
Foundations. Brooks Cole Publishing Co., 2000.
[29] Quinn KT. Review of Knowledge Management
in Theory and Practice by Kimiz Dalkir, Elsevier
Butterworth Heinemann, Interactions 13(2): 48-,
2006.
[30] Nonaka I., Takeuchi H. The Knowledge-
Creating Company: How Japanese Companies
Create the Dynamics of Innovation. Oxford and New
York: Oxford University Press, 1995.
[31] Dieng-Kuntz R., Matta N. editors. Knowledge
Management and Organizational Memories, Kluwer
Academic Publishers, ISBN 0-7923-2659, July,
2002.
[32]. Fensel D., Motta E., van Harmelen F.,
Benjamins V. R., Crubezy M., Decker S., Gaspari
M., Groenboom R., Grosso W., Musen M., Plaza E.,
Schreiber G., Studer R., Wielinga B. The Unified
Problem-Solving Method Development Language
UPML. Knowledge and Information Systems,
Volume 5, Issue 1, P. 83-131.
[33] Baget JF., Mugnier M-L. Extensions of Simple
Conceptual Graphs: the Complexity of Rules and

Constraints, Journal of Artificial Intelligence
Research (JAIR), vol. 16, p. 425-465, 2002.
[34] Aamodt A., Plaza E. Case-based reasoning:
foundational issues, methodological variations, and
system approaches. AI Communications, 7 (1), p. 39-
59, 1994.
[35] Kolodner J. Case-Based Reasoning, Morgan
Kaufmann Publishers INC, 1993.
[36] Staab S., Studer R. (eds.). Handbook on
Ontologies. International Handbooks on Information
Systems, Springer Verlag, 2004.
[37] Gruber TR. A translation approach to portable
ontology specifications. Knowledge Acquisition,
n°2(5), p. 199-220, 1993.
[38] Fensel D. Ontologies: Silver Bullet for
Knowledge Management and Electronic Commerce.
Springer-Verlag, ISBN: 3540416021, Berlin, 2001.
[39] Guarino N. Understanding, Building, and Using
Ontologies: A Commentary to Using Explicit
Ontologies in KBS Development, International
Journal of Human and Computer Studies, 46, p. 293-
310., 1997.
[40] Campbell KE, Oliver DE, Shortliffe EH. The
Unified Medical Language System: toward a
collaborative approach for solving terminologic
problems. Journal of the American Medical
Informatics Association 1998; 5(1), p. 12-16, 1998.
[41] Gruninger M., Atefi K., Fox MS., Ontologies to
Support Process Integration in Enterprise
Engineering, Computational and Mathematical
Organization Theory, Vol. 6, n° 4, p. 381-394, 2000.
[42] Abecker A. and van Elst L. Ontologies for
Knowledge Management, in Handbook of
Ontologies, Springer, Berlin, 435-455, 2004.
[43] Berners-Lee T., Hendler J., Lassila O. The
Semantic Web. Scientific American, 284(5), p. 34-
43, 2001.
[44] Malucelli A., Palzer D., Oliveira E. Ontology-
based Services to help solving the heterogeneity
problem in e-commerce negotiations. Electronic
Commerce Research and Applications, Volume 5,
Spring Issue 1, p. 29-43, 2006.
[45] Berio G. Delivrable D3.1: Requirements
analysis: initial core constructs and architecture.
Unified Enterprise Modeling Language (UEML)
Thematic Network, IST-2001-34229, (document
available from the UEML portal at:
http://www.ueml.org), 2003.
[46] Chen D., Vernadat F. Standards on enterprise
integration and engineering – A state of the art. In
International Journal of Computer Integrated
Manufacturing (IJCIM), Volume 17, n°3, p. 235-
253, April-May 2004.
[47] Shahar Y., Young O., Shalom E., Galperin M.,
Mayaffit A., Moskovitch R., Hessing A. A
framework for a distributed, hybrid, multiple-
ontology clinical-guideline library, and automated
guideline-support tools. Journal of Biomedical
Informatics, Volume 37, Issue 5, p. 325-344,

October 2004.
[48] Domingue J., Stutt A., Martins M. , Tan J.
Petursson H., Motta E. Supporting online shopping
through a combination of ontologies and interface
metaphors. International Journal of Human-
Computer Studies, Volume 59, Issue 5, p. 699-723,
November 2003.
[49] Genest D., Chein M. A Content-search
Information Retrieval Process Based on Conceptual
Graphs. Knowledge And Information Systems,
volume 8, no. 3, p. 292-309. Springer, 2005.
[50] Braga RMM., Werner CML., Mattoso M.
Odyssey-Search: A multi-agent system for
component information search and retrieval. Journal
of Systems and Software, Volume 79, Issue 2, p.
204-215, 2006.
[51] Uschold M., Gruninger M. Ontologies:
Principles, Methods and Applications, Knowledge
Engineering Review, vol.11:2, p. 93-136, 1996.
[52] Ducq Y., Chen D., Vallespir B. Interoperability
in enterprise modelling: requirements and roadmap.
Advanced Engineering Informatics, Volume 18,
Issue 4, p. 193-203, 2004.
[53] Orgun B., Vu J. HL7 ontology and mobile
agents for interoperability in heterogeneous medical
information systems. Computers in Biology and
Medicine, Volume 36, Issues 7-8, p. 817-836, 2006.
[54] Tu SW., Eriksson H., Gennari JH., Shahar Y.,
Musen MA. Ontology-based configuration of
problem-solving methods and generation of
knowledge-acquisition tools: application of
PROTÉGÉ-II to protocol-based decision support.
Artificial Intelligence in Medicine, Volume 7, Issue
3, p. 257-289, 1995.
[55] Reynaud C., Tort F. Using explicit ontologies to
create problem solving methods. International
Journal of Human-Computer Studies, Volume 46,
Issues 2-3, p. 339-364, 1997.
[56] Abel M., Silva LA., Campbell JA., De Ros LF.
Knowledge acquisition and interpretation problem-
solving methods for visual expertise: S study of
petroleum-reservoir evaluation. Journal of Petroleum
Science and Engineering, Volume 47, Issues 1-2, p.
51-69, 2005.
[57] Barthès JPA., Tacla CA. Agent-supported
portals and knowledge management in complex
R&D projects. Computers in Industry, Volume 48,
Issue 1, p. 3-16., 2002.
[58] Wand Y. Ontology as a foundation for meta-
modelling and method engineering. Information and
Software Technology, Volume 38, Issue 4, p. 281-
287, 1996.
[59] Baader F., Calvanese D., McGuinness D., Nardi
D., P. Patel-Schneider. The description logic
handbook. Theory, implementation and applications,
Cambridge University Press, Cambridge, 2003.
[60] Angele J., Lausen G. Ontologies in f-logic. In:
Staab S., Studer R. Editors, Handbook on
ontologies, Springer-Verlag, Berlin, p. 29–50, 2004.

[61] Hayes P. Resource Description Framework
(RDF) Semantics. W3C Recommendation, 2004.
[62] Antoniou G., Harmelen F.V. Web Ontology
Language: OWL. In: Staab S. and Studer R., Editors,
Handbook on ontologies, Springer-Verlag, Berlin, p.
67–92, 2004.
[63] Fensel D., Rousset MC, Decker S. Workshop
on comparing description and frame logic. Data &
Knowledge Engineering, p. 347–352, 1998.
[64] Dieng R., Corby O. Conceptual Graphs for
Semantic Web Applications, In: Proc. of the 13th
Int. Conference on Conceptual Structures
(ICCS'2005), Dau F., Mugnier M-L., Stumme G.
(editors), Kassel (Germany), July 17-23, 2005,
Springer-Verlag, LNAI 3596, p. 19-50, 2005.
[65] Yao H., Etzkorn L., Automated conversion
between different knowledge representation
formats.Knowledge-Based Systems, Volume 19,
Issue 6, p. 404-412, October 2006.
[66] Diallo D. Assistance to validation through
paraphrasing of formal specification written in B. (in
French). PhD thesis, University of Nantes, 2000.
[67] Gutierrez A. COGUI (Conceptual Graphs
Graphical User Interface). Workshop "Tools" of the
13th International Conference on Conceptual
Structures (ICCS'2005), July 18-22, 2005, Kassel,
Germany. CoGui Project Web site:
http://www.lirmm.fr/~gutierre/cogui/, 2005.
[68] Gerbé O., Mineau GW. The CG Formalism as
an Ontolingua for Web-Oriented Representation
Languages. ICCS’2002, Borovetz, July 2002,
Springer, p. 205-219, 2002.
[69] Dieng-Kuntz R., Minier D., Ruzicka M., Corby
F., Corby O., Alamarguy L. Building and Using a
Medical Ontology for Knowledge Management and
Cooperative Work in a Health Care Network.
Computers in Biology and Medicine, Volume 36,
Issues 7-8, p. 871-892, 2006.
[70] Chein M., Mugnier ML. Conceptual graphs:
fundamental notions, Revue d’Intelligence
Artificielle 1992 ; 6 (4), p. 365–406, 1992.
[71] Mugnier ML. On generalization/specialization
for conceptual graphs, Journal of Experimental and
Theoretical Artificial Intelligence, vol. 7, p. 325-
344, 1995.
[72] Coulondre S. CG-SQL: a front-end language for
conceptual graph knowledge bases. Knowledge-
Based Systems, Volume 12, Issues 5-6, October
1999, p. 293-302.
[73] Kamigaki T., Nakamura N., An Object-
Oriented Visual Model - Building and Simulation
System for FMS Control, Simulation, vol. 67, n°6,
1996, p. 375-385.
[74] Volot F., Joubert M., Fieschi M. Review of
biomedical knowledge and data representation with
conceptual graphs. Methods of Information in
Medicine, Volume 37, Issue 1, 1998, p. 86-96.
[75] Lee J., Lai LF. Verifying task-based
specifications in conceptual graphs. Information and

Software Technology, Volume 39, Issues 14-15,
1998, P. 913-923.
[76] Kamsu-Foguem B., Chapurlat V. Requirements
modelling and formal analysis using graph
operations. International Journal of Production
Research, Vol. 44, No. 17, 1 September 2006, p.
3451–3470.
[77] Mugnier ML., Chein M. (eds.) Conceptual
Structures: Theory, Tools, and Applications, Lecture
Notes in AI, vol. 1453, Springer-Verlag, Berlin,
1998.
[78] Corby O., Dieng-Kuntz R., Faron-Zucker C.,
Gandon F. Searching the Semantic Web:
Approximate Query Processing based on Ontologies.
IEEE Intelligent Systems Journal, Vol. 21, No.1,
2006.
[79] Thomopoulos R., Buche P., Hammerlé O.
Representation of weakly structured imprecise data
for fuzzy querying. Fuzzy Sets and Systems, vol.
140, p. 111-128, 2003.
[80] Kabbaj A., Petersen U. PROLOG+CG version
2.0 User’s Manual, (Web site of PROLOG+CG:
http://prologpluscg.sourceforge.net/)
[81] Jackson M. Problems, Methods and
Specialisation. Software Engineering Journal,
Volume 9, N° 6, p. 249-255, edited and abridged in
IEEE Software, Vol. 11, N° 6, p. 57-62, November
1994.
[82] Maiden NAM, Hare M. Problem domain
categories in requirements engineering. International
Journal of Human-Computer Studies. 49(3), p. 281-
304, September 1998.
[83] Aha DW., Breslow L., Muñoz-Avila H.
Conversational Case-Based Reasoning. Applied
Intelligence, 14(1): 9-32, 2001.
[84] Manago M., Bergmann R, Wess S., Traphöner
R. CASUEL: A Common Case Representation
Language - Version 2.0 ESPRIT-Project INRECA,
Deliverable D1. Technical Report, University of
Kaiserslautern, 1994. Document available from
http://www.wi2.uni-trier.de/publications/CASUEL
%20V2.03%20Language%20Def_w95.pdf, 1994.
[85] Hayes C., Cunningham P. Shaping a CBR view
with XML, Lecture Notes in Computer Science, Vol.
1650, p. 468-482, 1999.

