82 research outputs found
Chemical weathering of the volcanic soils of Isla Santa Cruz (GalĂĄpagos Islands, Ecuador)
We present a study on weathering of volcanic soils using 43 profiles (131 horizons) sampled in Santa Cruz Island (Galapagos Islands). Several weathering indices, based on chemical composition, are used. Since the geological material is highly homogeneous the intensity of weathering is mostly related to climatic conditions controlled by topography. There is a gradient of increasing weathering from the arid conditions predominant in the coast to elevations of 400-500 m a.s.l. where much more humid conditions prevail
Two Distinct, Geographically Overlapping Lineages of the Corallimorpharian Ricordea Florida (Cnidaria: Hexacorallia: Ricordeidae)
We examined the genetic variation of the corallimorpharian Ricordea florida; it is distributed throughout the Caribbean region and is heavily harvested for the marine aquarium trade. Eighty-four distinct individuals of R. florida were sequenced from four geographically distant Caribbean locations (Curaçao, Florida, Guadeloupe, and Puerto Rico). Analysis of the ribosomal nuclear region (ITS1, 5.8S, ITS2) uncovered two geographically partially overlapping genetic lineages in R. florida, probably representing two cryptic species. Lineage 1 was found in Florida and Puerto Rico, and Lineage 2 was found in Florida, Puerto Rico, Guadeloupe, and Curaçao. Because of the multi-allelic nature of the ITS region, four individuals from Lineage 1 and six from Lineage 2 were cloned to evaluate the levels of hidden intra-individual variability. Pairwise genetic comparisons indicated that the levels of intra-individual and intra-lineage variability (\u3c1%) were approximately an order of magnitude lower than the divergence (~9%) observed between the two lineages. The fishery regulations of the aquarium trade regard R. florida as one species. More refined regulations should take into account the presence of two genetic lineages, and they should be managed separately in order to preserve the long-term evolutionary potential of this corallimorpharian. The discovery of two distinct lineages in R. florida illustrates the importance of evaluating genetic variability in harvested species prior to the implementation of management policies
Quantum Confinement of Dirac Quasiparticles in Graphene Patterned with SubâNanometer Precision
Quantum confinement of graphene Diracâlike electrons in artificially crafted nanometer structures is a long sought goal that would provide a strategy to selectively tune the electronic properties of graphene, including bandgap opening or quantization of energy levels. However, creating confining structures with nanometer precision in shape, size, and location remains an experimental challenge, both for topâdown and bottomâup approaches. Moreover, Klein tunneling, offering an escape route to graphene electrons, limits the efficiency of electrostatic confinement. Here, a scanning tunneling microscope (STM) is used to create graphene nanopatterns, with subânanometer precision, by the collective manipulation of a large number of H atoms. Individual graphene nanostructures are built at selected locations, with predetermined orientations and shapes, and with dimensions going all the way from 2 nm up to 1 ”m. The method permits the patterns to be erased and rebuilt at will, and it can be implemented on different graphene substrates. STM experiments demonstrate that such graphene nanostructures confine very efficiently graphene Dirac quasiparticles, both in 0D and 1D structures. In graphene quantum dots, perfectly defined energy bandgaps up to 0.8 eV are found that scale as the inverse of the dotâs linear dimension, as expected for massless Dirac fermions.This work was supported by AEI and FEDER under projects MAT2016-80907-P and MAT2016-77852-C2-2-R (AEI/FEDER, UE) by the FundaciĂłn RamĂłn Areces, the Comunidad de Madrid NMAT2D-CM program under grant S2018/NMT-4511, and the Spanish Ministry of Science and Innovation, through the âMarĂa de Maeztuâ Programme for Units of Excellence in R&D (CEX2018-000805-M). European Union through the FLAG-ERA program HiMagGraphene project PCIN-2015-030; No. ANR-15-GRFL-0004) and the Graphene Flagship program (Grant agreement 604391). J.L.L acknowledges financial support from the ETH Fellowship program; J.F.-R. acknowledges supported by Fundação para a CiĂȘncia e a Tecnologia grants P2020-PTDC/FIS-NAN/3668/2014 and TAPEXPL/NTec/0046/2017
VARVI: A Software Tool for Analyzing the Variability of the Heart Rate in Response to Visual Stimuli
Abstract This paper describes a free software tool (VARVI) developed in our research group to facilitate the analysis of heart rate variability (HRV) in response to different visual stimuli. This tool was developed after the realization that this type of studies are becoming to be used in fields such as psychiatry, psychology and marketing and that there are no specific tools for this purpose. It has been developed in python language and tested on Linux but extensible to other operating systems. It requires the connection of a Bluetooth chest strap Polar WearLink to the subject. The researcher selects a set of videos of any duration and the application shows them to the subject in a predefined or random order, while the heart rate is recorded. The result is a pair of text files that can be read by other HRV tools developed in our group (RHRV or gHRV). VARVI has been used for analyzing the response to watching the videos of the last Galician election campaign in a group of 90 people. It will be used in a project whose goal is to analyze the impact of traffic accidents prevention campaign in Spain and also in a research with depressed patients, in collaboration with the Hospital of Ourense
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey : cosmological implications of the Fourier space wedges of the final sample
We extract cosmological information from the anisotropic power-spectrum measurements from the recently completed Baryon Oscillation Spectroscopic Survey (BOSS), extending the concept of clustering wedges to Fourier space. Making use of new fast-Fourier-transform-based estimators, we measure the power-spectrum clustering wedges of the BOSS sample by filtering out the information of Legendre multipoles â > 4. Our modelling of these measurements is based on novel approaches to describe non-linear evolution, bias and redshift-space distortions, which we test using synthetic catalogues based on large-volume N-body simulations. We are able to include smaller scales than in previous analyses, resulting in tighter cosmological constraints. Using three overlapping redshift bins, we measure the angular-diameter distance, the Hubble parameter and the cosmic growth rate, and explore the cosmological implications of our full-shape clustering measurements in combination with cosmic microwave background and Type Ia supernova data. Assuming a Î cold dark matter (ÎCDM) cosmology, we constrain the matter density to ΩM=0.311+0.009/â0.010 and the Hubble parameter to H0=67.6+0.7/â0.6kmsâ1 Mpcâ1, at a confidence level of 68 per cent. We also allow for non-standard dark energy models and modifications of the growth rate, finding good agreement with the ÎCDM paradigm. For example, we constrain the equation-of-state parameter to w=â1.019+0.048/â0.039. This paper is part of a set that analyses the final galaxy-clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. to produce the final cosmological constraints from BOSS.PreprintPublisher PDFPeer reviewe
Human Resource Flexibility as a Mediating Variable Between High Performance Work Systems and Performance
Much of the human resource management literature has demonstrated the impact of high performance
work systems (HPWS) on organizational performance. A new generation of studies is
emerging in this literature that recommends the inclusion of mediating variables between HPWS
and organizational performance. The increasing rate of dynamism in competitive environments
suggests that measures of employee adaptability should be included as a mechanism that may
explain the relevance of HPWS to firm competitiveness. On a sample of 226 Spanish firms, the
studyâs results confirm that HPWS influences performance through its impact on the firmâs
human resource (HR) flexibility
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample
We present cosmological results from the final galaxy clustering data set of the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. Our combined galaxy sample comprises 1.2 million massive galaxies over an effective area of 9329 and volume of 18.7 , divided into three partially overlapping redshift slices centred at effective redshifts 0.38, 0.51, and 0.61. We measure the angular diameter distance DM and Hubble parameter H from the baryon acoustic oscillation (BAO) method after applying reconstruction to reduce non-linear effects on the BAO feature. Using the anisotropic clustering of the pre-reconstruction density field, we measure the product DM*H from the Alcock-Paczynski (AP) effect and the growth of structure, quantified by , from redshift-space distortions (RSD). We combine measurements presented in seven companion papers into a set of consensus values and likelihoods, obtaining constraints that are tighter and more robust than those from any one method. Combined with Planck 2015 cosmic microwave background measurements, our distance scale measurements simultaneously imply curvature and a dark energy equation of state parameter w = -1.01+/-0.06, in strong affirmation of the spatially flat cold dark matter model with a cosmological constant (CDM). Our RSD measurements of , at 6 per cent precision, are similarly consistent with this model. When combined with supernova Ia data, we find H0 = 67.3+/-1.0 km/s/Mpc even for our most general dark energy model, in tension with some direct measurements. Adding extra relativistic species as a degree of freedom loosens the constraint only slightly, to H0 = 67.8+/-1.2 km/s/Mpc. Assuming flat CDM we find and H0 = 67.6+/-0.5 km/s/Mpc, and we find a 95% upper limit of on the neutrino mass sum
The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: Final Data from SDSS-III
The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra. \ua9 2015. The American Astronomical Society
- âŠ