52 research outputs found

    Hva påvirker fjellvandring? Refleksjon på motivasjon, risikopersepsjon, og bærekraftig fjellvandring – En komparativ studie mellom fjellvandringsmiljø i Norge og Spania

    Get PDF
    Denne studien undersøkte motivene, risikooppfatningen og oppfatningen av bærekraft til turgåere ved to forskjellige destinasjoner for fjellvandring: Lysefjorden i Norge og 7 pobles (de syv landsbyer) i Spania. Ved bruk av kvalitative intervjuer og analyse av turgåeres svar har det blitt identifisert likheter og forskjeller i motiver. Begge gruppene verdsatte fysisk aktivitet og natur, men vektleggingen av spesifikke motiver er forskjellig både innad i gruppene og mellom de forskjellige stedene. Risikooppfatningen ble funnet å være påvirket av individuelle preferanser, opplevelser og terrenget. Videre viste fjellvandrerne på begge destinasjonene et sterkt engasjement for bærekraftig turpraksis og godt tilrettelagte stier for å minimere innvirkningen på miljøet. Det ble konkludert med at forståelsen av disse faktorene kan være essensielt for utvikling av turdestinasjoner som imøtekommer ulike preferanser for fjellvandrere, fremmer fysisk aktivitet, og sikrer en langsiktig bærekraft for naturlige miljøer. Studien bidrar til økt kunnskap om motivasjon, risikovurdering og bærekraft i fjellvandring, og har implikasjoner for planlegging og utforming av turdestinasjoner. Resultatene understreker behovet for å tilpasse turtilbudet til turgåernes motivasjon og risikovurdering, samtidig som man tar hensyn til bærekraftige prinsipper. Dette er avgjørende for å fremme fysisk aktivitet og skape turdestinasjoner som oppfyller ulike behov, sikrer trygghet og bevarer naturen for kommende generasjoner.This research investigated the motives, risk perception, and sustainability considerations of hiker at two distinct hiking destinations: Lysefjorden in Norway and 7 villages in Spain. Through interviews and analysis of hikers’ responses, similarities, and differences in motives are identified. Both groups value physical activity and nature, but the emphasis on specific motives differs between the locations. Risk perception is found to be influenced by individual preferences, experiences, and the terrain. Furthermore, hikers at both destinations demonstrate a strong commitment to sustainable hiking practices and well-facilitated paths to minimize impact on the environment. Understanding these factors is essential for the development of hiking destinations that cater to diverse hiker preferences, promotion of physical activity, and ensuring a long-term sustainability of natural environments

    Terra Incognita - A comparative study of Vik and Hemnes and the strategies to rebuild trust after the Terra-scandal

    Get PDF
    This master thesis aims to answer the following research question: To what extent did Vik and Hemnes develop a strategy to rebuild trust after the Terra-scandal and what are the differences in these potential strategies of trust? To be able to answer this question, I approach it through a qualitative perspective where the descriptive case study plays an important role in uncovering relevant data. I used several written sources from both national and local media in Vik and Hemnes, as well as official municipal documents and semi-structured interviews with involved informants to help describe and understand the possible development of strategies to rebuild trust and the differences. My contribution is a classification of these strategies within a conceptual framework. In order to describe and classify these strategies I utilize the eighth propositions for trust repair by Gillespie and Dietz (2009). By connecting them into a set of concepts that helps describe the efforts for rebuilding trust in Vik and Hemnes after the Terra-scandal in 2007. The eighth strategies for rebuilding trust are classified into a wider theoretical framework, the performance perspective, the impression management perspective and the organizational perspective. Trust can be built on these three perspectives, but so should rebuilding trust. The conceptual framework aims to classify strategies for rebuilding trust within these three perspectives. The main findings of this thesis indicates that the strategies related to diagnosis, apology, context sensitivity and congruence were developed in Vik. And in Hemnes acknowledgment and readiness, diagnosis, timeliness, apology, context sensitivity and congruence was developed. In both municipalities the impression management perspective has had a clear presence in the development of the strategies, as well as the performance perspective, although with a stronger presence in Hemnes than in Vik. As for the organizational perspective there are similarities between the two municipalities, as both developed a strategy related to congruence, but not related to comprehensiveness.Masteroppgave i administrasjon og organisasjonsvitenskapAORG350MASV-AOR

    Identification of Bruton's tyrosine kinase as a therapeutic target in acute myeloid leukemia

    Get PDF
    Bruton's tyrosine kinase (BTK) is a cytoplasmic protein found in all hematopoietic cell lineages except for T cells. BTK mediates signalling downstream of a number of receptors. Pharmacological targeting of BTK using ibrutinib (previously PCI-32765) has recently shown encouraging clinical activity in a range of lymphoid malignancies. This study reports for the first time that ibrutinib inhibits blast proliferation from human acute myeloid leukaemia (AML) and that treatment with ibrutinib significantly augmented cytotoxic activities of standard AML chemotherapy cytarabine or daunorubicin. Here we describe that BTK is constitutively phosphorylated in the majority of AML samples tested, with BTK phosphorylation correlating highly with the cell's cytotoxic sensitivity towards ibrutinib. BTK targeted RNAi knock-down reduced colony forming capacity of primary AML blasts and proliferation of AML cell lines. We showed ibrutinib binds at nanomolar range to BTK. Furthermore, we also showed ibrutinib's anti-proliferative effects in AML are mediated via an inhibitory effect on downstream nuclear factor-κB (NF-κB) survival pathways. Moreover, ibrutinib inhibited AML cell adhesion to bone marrow stroma. Furthermore, these effects of ibrutinib in AML were seen at comparable concentrations efficacious in chronic lymphocytic leukemia (CLL). These results provide a biologic rationale for clinical evaluation of BTK inhibition in AML patients

    NRF2-driven miR-125B1 and miR-29B1 transcriptional regulation controls a novel anti-apoptotic miRNA regulatory network for AML survival

    Get PDF
    Transcription factor NRF2 is an important regulator of oxidative stress. It is involved in cancer progression, and has abnormal constitutive expression in acute myeloid leukaemia (AML). Posttranscriptional regulation by microRNAs (miRNAs) can affect the malignant phenotype of AML cells. In this study, we identified and characterised NRF2-regulated miRNAs in AML. An miRNA array identified miRNA expression level changes in response to NRF2 knockdown in AML cells. Further analysis of miRNAs concomitantly regulated by knockdown of the NRF2 inhibitor KEAP1 revealed the major candidate NRF2-mediated miRNAs in AML. We identified miR-125B to be upregulated and miR-29B to be downregulated by NRF2 in AML. Subsequent bioinformatic analysis identified putative NRF2 binding sites upstream of the miR-125B1 coding region and downstream of the mir-29B1 coding region. Chromatin immunoprecipitation analyses showed that NRF2 binds to these antioxidant response elements (AREs) located in the 5′ untranslated regions of miR-125B and miR-29B. Finally, primary AML samples transfected with anti-miR-125B antagomiR or miR-29B mimic showed increased cell death responsiveness either alone or co-treated with standard AML chemotherapy. In summary, we find that NRF2 regulation of miR-125B and miR-29B acts to promote leukaemic cell survival, and their manipulation enhances AML responsiveness towards cytotoxic chemotherapeutics

    Activity of Bruton's tyrosine-kinase inhibitor ibrutinib in patients with CD117-positive acute myeloid leukaemia: a mechanistic study using patient-derived blast cells

    Get PDF
    Background: Roughly 80% of patients with acute myeloid leukaemia have high activity of Bruton's tyrosine-kinase (BTK) in their blast cells compared with normal haemopoietic cells, rendering the cells sensitive to the oral BTK inhibitor ibrutinib in vitro. We aimed to develop the biological understanding of the BTK pathway in acute myeloid leukaemia to identify clinically relevant diagnostic information that might define a subset of patients that should respond to ibrutinib treatment. Methods: We obtained acute myeloid leukaemia blast cells from unselected patients attending our UK hospital between Feb 19, 2010, and Jan 20, 2014. We isolated primary acute myeloid leukaemia blast cells from heparinised blood and human peripheral blood mononuclear cells to establish the activity of BTK in response to CD117 activation. Furthermore, we investigated the effects of ibrutinib on CD117-induced BTK activation, downstream signalling, adhesion to primary bone-marrow mesenchymal stromal cells, and proliferation of primary acute myeloid leukaemia blast cells. We used the Mann-Whitney U test to compare results between groups. Findings: We obtained acute myeloid leukaemia blast cells from 29 patients. Ibrutinib significantly inhibited CD117-mediated proliferation of primary acute myeloid leukaemia blast cells (p=0·028). CD117 activation increased BTK activity by inducing phosphorylated BTK in patients with CD117-positive acute myeloid leukaemia. Furthermore, ibrutinib inhibited CD117-induced activity of BTK and downstream kinases at a concentration of 100 nM or more. CD117-mediated adhesion of CD117-expressing blast cells to bone-marrow stromal cells was significantly inhibited by Ibrutinib at 500 nM (p=0·028) Interpretation: As first-in-man clinical trials of ibrutinib in patients with acute myeloid leukaemia commence, the data suggest not all patients will respond. Our findings show that BTK has specific pro-tumoural biological actions downstream of surface CD117 activation, which are inhibited by ibrutinib. Accordingly, we propose that patients with acute myeloid leukaemia whose blast cells express CD117 should be considered for forthcoming clinical trials of ibrutinib

    Importance of dose-schedule of 5-aza-2'-deoxycytidine for epigenetic therapy of cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inactivation of tumor suppressor genes (TSGs) by aberrant DNA methylation plays an important role in the development of malignancy. Since this epigenetic change is reversible, it is a potential target for chemotherapeutic intervention using an inhibitor of DNA methylation, such as 5-aza-2'-deoxycytidine (DAC). Although clinical studies show that DAC has activity against hematological malignancies, the optimal dose-schedule of this epigenetic agent still needs to be established.</p> <p>Methods</p> <p>Clonogenic assays were performed on leukemic and tumor cell lines to evaluate the <it>in vitro </it>antineoplastic activity of DAC. The reactivation of TSGs and inhibition of DNA methylation by DAC were investigated by reverse transcriptase-PCR and Line-1 assays. The <it>in vivo </it>antineoplastic activity of DAC administered as an i.v. infusion was evaluated in mice with murine L1210 leukemia by measurement of survival time, and in mice bearing murine EMT6 mammary tumor by excision of tumor after chemotherapy for an <it>in vitro </it>clonogenic assay.</p> <p>Results</p> <p>Increasing the DAC concentration and duration of exposure produced a greater loss of clonogenicity for both human leukemic and tumor cell lines. The reactivation of the TSGs (<it>p57KIP2 </it>in HL-60 leukemic cells and <it>p16CDKN2A </it>in Calu-6 lung carcinoma cells) and the inhibition of global DNA methylation in HL-60 leukemic cells increased with DAC concentration. In mice with L1210 leukemia and in mice bearing EMT6 tumors, the antineoplastic action of DAC also increased with the dose. The plasma level of DAC that produced a very potent antineoplastic effect in mice with leukemia or solid tumors was > 200 ng/ml (> 1 μM).</p> <p>Conclusion</p> <p>We have shown that intensification of the DAC dose markedly increased its antineoplastic activity in mouse models of cancer. Our data also show that there is a good correlation between the concentrations of DAC that reduce <it>in vitro </it>clonogenicity, reactivate TSGs and inhibit DNA methylation. These results suggest that the antineoplastic action of DAC is related to its epigenetic action. Our observations provide a strong rationale to perform clinical trials using dose intensification of DAC to maximize the chemotherapeutic potential of this epigenetic agent in patients with cancer.</p

    HOX-mediated LMO2 expression in embryonic mesoderm is recapitulated in acute leukaemias

    Get PDF
    The Lim Domain Only 2 (LMO2) leukaemia oncogene encodes an LIM domain transcriptional cofactor required for early haematopoiesis. During embryogenesis, LMO2 is also expressed in developing tail and limb buds, an expression pattern we now show to be recapitulated in transgenic mice by an enhancer in LMO2 intron 4. Limb bud expression depended on a cluster of HOX binding sites, while posterior tail expression required the HOX sites and two E-boxes. Given the importance of both LMO2 and HOX genes in acute leukaemias, we further demonstrated that the regulatory hierarchy of HOX control of LMO2 is activated in leukaemia mouse models as well as in patient samples. Moreover, Lmo2 knock-down impaired the growth of leukaemic cells, and high LMO2 expression at diagnosis correlated with poor survival in cytogenetically normal AML patients. Taken together, these results establish a regulatory hierarchy of HOX control of LMO2 in normal development, which can be resurrected during leukaemia development. Redeployment of embryonic regulatory hierarchies in an aberrant context is likely to be relevant in human pathologies beyond the specific example of ectopic activation of LMO2

    A Novel murine model identifies cooperating mutations and therapeutic targets critical for chronic myeloid leukemia progression

    Get PDF
    The introduction of highly selective ABL-tyrosine kinase inhibitors (TKIs) has revolutionized therapy for chronic myeloid leukemia (CML). However, TKIs are only efficacious in the chronic phase of the disease and effective therapies for TKI-refractory CML, or after progression to blast crisis (BC), are lacking. Whereas the chronic phase of CML is dependent on BCR-ABL, additional mutations are required for progression to BC. However, the identity of these mutations and the pathways they affect are poorly understood, hampering our ability to identify therapeutic targets and improve outcomes. Here, we describe a novel mouse model that allows identification of mechanisms of BC progression in an unbiased and tractable manner, using transposon-based insertional mutagenesis on the background of chronic phase CML. Our BC model is the first to faithfully recapitulate the phenotype, cellular and molecular biology of human CML progression. We report a heterogeneous and unique pattern of insertions identifying known and novel candidate genes and demonstrate that these pathways drive disease progression and provide potential targets for novel therapeutic strategies. Our model greatly informs the biology of CML progression and provides a potent resource for the development of candidate therapies to improve the dismal outcomes in this highly aggressive disease.Work in the Huntly laboratory is funded by CRUK, The European Research Council (ERC), Leukaemia Lymphoma Research, the Kay Kendall Leukaemia Fund, Wellcome Trust, the Medical Research Council (UK), the Leukemia Lymphoma Society America and the Cambridge NIHR Biomedical Research centre. David Adams is funded by Cancer Research UK and Wellcome Trust. Steffen Koschmieder has received funding from Deutsche José Carreras Leukämie-Stiftung (DJCLS; grant 10/23).This is the final published version. It first appeared at http://dx.doi.org/10.1084/jem.2014166

    Mifepristone prevents repopulation of ovarian cancer cells escaping cisplatin-paclitaxel therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advanced ovarian cancer is treated with cytoreductive surgery and combination platinum- and taxane-based chemotherapy. Although most patients have acute clinical response to this strategy, the disease ultimately recurs. In this work we questioned whether the synthetic steroid mifepristone, which as monotherapy inhibits the growth of ovarian cancer cells, is capable of preventing repopulation of ovarian cancer cells if given after a round of lethal cisplatin-paclitaxel combination treatment.</p> <p>Methods</p> <p>We established an <it>in vitro</it> approach wherein ovarian cancer cells with various sensitivities to cisplatin or paclitaxel were exposed to a round of lethal doses of cisplatin for 1 h plus paclitaxel for 3 h. Thereafter, cells were maintained in media with or without mifepristone, and short- and long-term cytotoxicity was assessed.</p> <p>Results</p> <p>Four days after treatment the lethality of cisplatin-paclitaxel was evidenced by reduced number of cells, increased hypodiploid DNA content, morphological features of apoptosis, DNA fragmentation, and cleavage of caspase-3, and of its downstream substrate PARP. Short-term presence of mifepristone either enhanced or did not modify such acute lethality. Seven days after receiving cisplatin-paclitaxel, cultures showed signs of relapse with escaping colonies that repopulated the plate in a time-dependent manner. Conversely, cultures exposed to cisplatin-paclitaxel followed by mifepristone not only did not display signs of repopulation following initial chemotherapy, but they also had their clonogenic capacity drastically reduced when compared to cells repopulating after cisplatin-paclitaxel.</p> <p>Conclusions</p> <p>Cytostatic concentrations of mifepristone after exposure to lethal doses of cisplatin and paclitaxel in combination blocks repopulation of remnant cells surviving and escaping the cytotoxic drugs.</p

    Genome-Wide Analysis of Transcriptional Reprogramming in Mouse Models of Acute Myeloid Leukaemia

    Get PDF
    Acute leukaemias are commonly caused by mutations that corrupt the transcriptional circuitry of haematopoietic stem/progenitor cells. However, the mechanisms underlying large-scale transcriptional reprogramming remain largely unknown. Here we investigated transcriptional reprogramming at genome-scale in mouse retroviral transplant models of acute myeloid leukaemia (AML) using both gene-expression profiling and ChIP-sequencing. We identified several thousand candidate regulatory regions with altered levels of histone acetylation that were characterised by differential distribution of consensus motifs for key haematopoietic transcription factors including Gata2, Gfi1 and Sfpi1/Pu.1. In particular, downregulation of Gata2 expression was mirrored by abundant GATA motifs in regions of reduced histone acetylation suggesting an important role in leukaemogenic transcriptional reprogramming. Forced re-expression of Gata2 was not compatible with sustained growth of leukaemic cells thus suggesting a previously unrecognised role for Gata2 in downregulation during the development of AML. Additionally, large scale human AML datasets revealed significantly higher expression of GATA2 in CD34+ cells from healthy controls compared with AML blast cells. The integrated genome-scale analysis applied in this study represents a valuable and widely applicable approach to study the transcriptional control of both normal and aberrant haematopoiesis and to identify critical factors responsible for transcriptional reprogramming in human cancer
    corecore