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HOX-mediated LMO?2 expression in embryonic mesoderm
1s recapitulated in acute leukaemias

FJ Calero-Nieto', A Joshi'?, N Bonadies', S Kinston', W-I Chan', E Gudgin', C Pridans'?, J-R Landry'#, J Kikuchi?, BJ Huntly'

and B Gottgens'

The Lim Domain Only 2 (LMO2) leukaemia oncogene encodes an LIM domain transcriptional cofactor required for early

haematopoiesis. During embryogenesis, LMO?2 is also expressed in developing tail and limb buds, an expression pattern we now
show to be recapitulated in transgenic mice by an enhancer in LMO?2 intron 4. Limb bud expression depended on a cluster of
HOX binding sites, while posterior tail expression required the HOX sites and two E-boxes. Given the importance of both LMO2 and
HOX genes in acute leukaemias, we further demonstrated that the regulatory hierarchy of HOX control of LMO?2 is activated in
leukaemia mouse models as well as in patient samples. Moreover, Lmo2 knock-down impaired the growth of leukaemic cells,
and high LMO2 expression at diagnosis correlated with poor survival in cytogenetically normal AML patients. Taken together, these
results establish a regulatory hierarchy of HOX control of LMO?2 in normal development, which can be resurrected during leukaemia

development. Redeployment of embryonic regulatory hierarchies in an aberrant context is likely to be relevant in human
pathologies beyond the specific example of ectopic activation of LMO2.

Oncogene advance online publication, 27 May 2013; doi:10.1038/onc.2013.175
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INTRODUCTION

The Lim Domain Only 2 (LMO2) gene encodes a transcriptional
cofactor that forms multiprotein complexes with other trans-
cription factors, such as Ldb1, Scl/Tal1, E2A and Gata1/Gata2' and
is widely expressed within the haematopoietic system with the
exception of T cells. Mice lacking LMO2 die around embryonic day
E10.5 because of a complete failure of erythropoiesis.?> LMO?2 is a
major oncogene in T-cell acute lymphoblastic leukaemia (T-ALL)
and was originally identified through its involvement in recurrent
chromosomal translocations.>* Importantly, transgenic mouse
models confirmed that ectopic expression of LMO2 in T cells
constitutes an initiating leukaemogenic lesion.> Three distinct
promoters and eight enhancer elements dispersed over 100 kb have
been identified in the regulation of the LMO2 gene.'° By contrast,
the regulatory pathways that direct abnormal expression in T-ALL
patients without LMO?2 translocations are much less well understood.
Since aberrant ectopic LMO2 expression in T-ALL is much more
prevalent than translocations involving the [MO2 locus,'"
dysregulation of transcriptional pathways upstream of LMO2 needs
to be recognized as a potentially leukaemogenic event.

Homeobox genes are essential developmental regulators. Their
abnormal expression is frequently observed in lymphoid, myeloid
and mixed-lineage leukaemias (MLL), and is characteristic of
translocations involving the MLL gene.'? High-level expression
of HOXA genes can also be seen in leukaemia patients without
MLL translocations'®'* and confers poor prognosis in both T-ALL
and acute myeloid leukaemia (AML)'*'> thus emphasizing the
need for further research to identify key downstream mediators of
the leukaemic phenotype.

Here, we report the characterization of an enhancer responsible
for Lmo2 expression in the embryonic tail bud and limbs. Using
extensive transgenic mouse analysis, we demonstrate that this
enhancer depends upon highly conserved HOX and E-box maotifs.
Moreover, the enhancer also functions in leukaemia cell lines,
displays active histone marks in primary patient samples and can
be activated by HOXA5. Finally, we provide evidence to suggest
that elevated levels of LMO2 contribute to the leukaemic
phenotype in AML, beyond the conventional role of LMO2 as a
T-ALL oncogene.

RESULTS

Lmo2 displays anterior/posterior-specified expression domains
during early development

Analysis of Lmo2 knock-in transgenic mice that contain an LacZ
reporter gene inserted into the Lmo2 locus'® revealed consistent
expression at embryonic day E12.5 in vessels, brain, eyes, somites,
fetal liver, Progress Zone (PZ) beneath the Apical Ectodermal
Ridge region of limb buds, tail bud and developing limbs
(Supplementary Figures 1i-iii). RNA in situ hybridization at E10.5
confirmed strong Lmo2 expression in the PZ and posterior part of
developing limbs as well as the tail bud (Supplementary Figures
liv—v). By day E11.5, Lmo2 expression in limb buds was largely
confined to the PZ with only faint staining in the antero- and
postero-distal regions. Tail bud staining was also weaker at E11.5
consistent with general downregulation of Lmo2 in these early
mesodermal tissues at midgestation. Taken together, therefore,
RNA in situ hybridization and analysis of Lmo2 knock-in embryos
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identified expression in limbs and tail bud, thus establishing non-
haematopoietic expression domains of Lmo2 that are organized in
an anterior/posterior pattern, and therefore likely related to some
of the major patterning activities during early development.

A conserved enhancer in LMO2 intron 4 is active during early limb
and tail bud development

Our previous analysis of the LMO2 locus identified a conserved
region located 1kb downstream of the LMO2 ATG (hereafter

referred to as + 1 enhancer; Figure 1a), which directed expression
to endothelial but not to blood cells when tested in transgenic
mice in combination with the LMO2 proximal promoter (pP).2 By
contrast, the pP region alone only displayed weak endothelial
activity.” A more detailed analysis of transgenic embryos carrying
the +1 enhancer demonstrated consistent activity in the
PZ region, tail bud and developing limbs (Figure 1b). Importantly,
this expression pattern was observed with both a heterologous
SV40 and endogenous LMO2 pP thus demonstrating classical
enhancer activity.
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Figure 1. The LMO2 -+ 1 enhancer drives expression to the developing limb and tail buds as well as to endothelium in transgenic mouse
embryos. (@) MVista representation of sequence conservation across the mouse Lmo2 locus showing mouse/human, mouse/dog and mouse/
opossum alignments. The conservation plots show regions with at least 50% of conservation (y axis). Peaks of sequence conservation in exons
are shown in blue, those in transcribed but not in translated regions (3" UTR and 5 UTR) are shown in pale blue and those in non-coding
regions are shown in orange. Arrows indicate the direction of transcription. The region corresponding to the + 1 enhancer is highlighted.
(b) Whole-mount staining of representative E12.5 transgenic mouse embryos for the constructs indicated, with close-up views of limbs and
tail bud regions shown to the right of each whole-mount view. LMO2 + 1 enhancer directed expression of reporter gene to the PZ region, tail
bud, developing limbs and endothelium with a heterologous SV40 (SV/lacZ/ + 1) and endogenous LMO2 proximal promoter (pP/lacZ/+ 1).
Transgenic embryos carrying 5’ region of + 1 enhancer (pP/lacZ/ + 1-5) presented staining in tail bud, developing limbs and endothelium.
Transgenic embryos carrying 3’ region of + 1 enhancer (pP/lacZ/ + 1-3') only present strong endothelial staining. (c) Representative E8.5 and
E10.5 mouse embryos from a transgenic mouse line carrying the pP/lacZ/ + 1 construct, showing staining in the PZ, developing limbs and tail
bud area.
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Sequence analysis revealed two blocks of evolutionary
conservation corresponding to the 5 and 3’ regions of the
element (Figure 2a). When the 5’ region was used to generate
transgenic embryos, lacZ activity was retained in tail bud
and developing limbs (Figure 1b). By contrast, staining in PZ,
tail bud and developing limbs was abolished when using the
3’ region with only strong endothelial staining remaining. To
define the activity of the + 1 enhancer at multiple stages of early
development, we generated a stable transgenic line containing
the enhancer together with the pP. LacZ expression was observed
as early as E8.5, with specific staining in PZ, developing limbs and
tail bud area prominent by day E10.5 (Figure 1c). Taken together,
these results suggest that the LMO2 +1 enhancer has an
important role in directing the expression of Lmo2 to developing
limbs and tail as well as to endothelial cells.

Activity of the LMO2 + 1 enhancer in the PZ and limb buds
requires Homeobox consensus sites

Blocks of sequence conservation in the + 1 enhancer (Figure 2a)
included six putative consensus binding sites for homeodomain
transcription factors (HOX boxes) as well as two putative E-boxes
for basic Helix-Loop-Helix (bHLH) proteins. Of note, putative
HOX binding sites located in the 5’ portion of the enhancer
corresponded to a TAAT consensus, while those located in the 3’
portion matched an ATAA consensus. To assess the importance of
the E-box and HOX consensus sites, mutant enhancer constructs
were analysed in transgenic assays (Figure 2b). Simultaneous
mutation of all six putative HOX binding sites did not affect
endothelial expression or staining of tail bud, but abolished
staining in developing limbs and PZ (Figure 2b). Mutation of the
two E-boxes did not affect expression in limbs and endothelial
cells, but caused a significant reduction in tail bud staining
(Figure 2b).

Mutation of the three homeoboxes located in the 5’ region of
the + 1 enhancer (HOX1, HOX2 and HOX3; corresponding to TAAT
consensus) resulted in a staining pattern similar to that seen with
ablation of all six homeobox sites. On the other hand, when only
homeoboxes located in the 3’ region were mutated (HOX4, HOX5
and HOX6; corresponding to ATAA consensus), the staining
pattern was indistinguishable from wild-type enhancer. Interest-
ingly, when HOX1, HOX2 and HOX3 motifs were mutated together
with E-boxes 1 and 2, no staining of developing limbs, PZ or tail
bud was observed with only endothelial staining remaining
(Figure 2b). The staining pattern therefore was very similar to that
obtained with only the 3’ part of the enhancer (see above and
Figure 1b), thus suggesting that the HOX1, HOX2 and HOX3 motifs
together with the two E-boxes have a critical role in the expression
of LMO2 in PZ, limb and tail bud. These results therefore
suggest that expression of Lmo2 during early limb and tail bud
development is critically controlled by homeodomain and bHLH
transcription factors.

T-ALL patients with high HOXA gene expression show elevated
levels of LMO2

Translocations that place T-cell receptor enhancers in the vicinity
of the LMO2 gene represent one of the classical initiating
mutations in T-ALL. Chromosomal rearrangements involving
the HOXA cluster have also recently been identified in a subset
of T-ALL patients.'® Following on from our discovery of a
regulatory hierarchy between homeodomain factors and Lmo2
during early embryonic development, we next investigated
whether evidence for a similar link could be detected in T-ALL
patients. To this end, we analysed LMO2 expression in a published
cohort of 67 T-ALL patients, grouped into 5 clusters largely based
on their primary cytogenetic abnormality (TAL1, LMO2, HOX11,
HOX11L2 and HOXA)." LMO2 expression was highest in those
samples with LMO2 and TAL1 translocations, which are known to
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represent a T-ALL subgroup with similar genetic and phenotypic
characteristics’'*'” but was also elevated in patients with
upregulation of HOXA locus genes (Figure 3a). Our identification
of elevated LMO2 levels in these patients suggests a link between
HOXA genes and LMO2, likely to be relevant for T-ALL. Of note, the
recent discovery of acquired mutations in MEF2C in a subset of
immature T-ALL patients together with the observation that
MEF2C can bind to the LMO2 promoters has already established a
precedent for LMO2 function as a potential leukaemia oncogene
in this subset of ‘phenotypically early’ T-ALL."”

HOXAS5 can transactivate the LMO2 + 1 enhancer

T-ALL patients that correspond to the HOXA group are
characterized by high levels of expression of HOXA5, HOXA7
and HOXA9 genes.'>' Staining of the central-posterior part of
developing limbs observed in LMO2 +1 enhancer transgenic
embryos was similar to the expression pattern of central-posterior
HOXA genes (including HOXA5, HOXA7 and HOXA9) during early
development. We therefore hypothesized that LMO2 expression
may be under direct control of HOXA genes. A recent study
assessing the consensus binding sites for homeoproteins
demonstrated that the core binding site for HoxA5 and HoxA7
is TAAT, while ATAA is the preferred consensus for HoxA9.'® Both
motifs correspond to the conserved HOX sites present in the LMO2
+1 region, with the HoxA5/HoxA7 TAAT motif corresponding
to the functionally significant motifs present in the 5 half of
the enhancer.

We performed transactivation studies where constructs
containing the LMO2 pP with and without the + 1 enhancer were
co-transfected with expression constructs for HOXA5, HOXA7 or
HOXA9. Experiments were also performed using an HOX11
expression construct, since HOX11 represents a T-ALL oncogenic
homeobox gene whose high expression constitutes an indepen-
dent patient group without elevated LMO2 expression (see
Figure 3a)."*"*1? Transactivation assays performed with HOX11,
HOXA7 or HOXA9 did not show significant enhancement of
luciferase activity, even in the presence of their dimerization
partner Meis1 (data not shown). By contrast, transactivations using
HOXAS5 resulted in ~7-fold enhancement of luciferase activity,
which was abolished following simultaneous mutation of the
first three or all six conserved HOX motifs contained in the + 1
enhancer (Figure 3b). Our data are therefore consistent with a
model whereby LMO2 is under the control of homeobox genes
such as HOXA5 acting through the +1 enhancer to mediate
ectopic expression in a subset of T-ALL patients with immature
phenotype.

The LMO2 + 1 enhancer carries active chromatin marks

in AML patients

Immature T-ALL has long been recognized to share molecular and
cellular features with AML, a notion underlined further by
recent reports of genome sequencing in early precursor T-cell
ALL (ETP-ALL).?® As shown above, LMO2 expression in
T-ALL correlates with upregulation of HOXA genes. Moreover,
T-ALL samples with an HOXA signature and high LMO2 commonly
display an immature ETP phenotype'®'7'9?! and occasionally
co-express both lymphoid and myeloid surface antigens.'**?
However, T-ALL samples with translocations involving the LMO2
locus generally present a more mature phenotype.'>'” Moreover,
the HOXA-inducing MLL or CALM-AF10 translocations are
also often found in T-ALL patients with immature T-cell
immunophenotypes,'*'*?2?* thus suggesting a common theme
of HOXA-LMO2 activation in this subgroup of T-ALL. Of note, both
MLL and CALM-AF10 translocations are also found as recurrent
translocations in AML,***> and mouse models show both myeloid
and lymphoid characteristics.?®

Oncogene (2013), 1-10
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Figure 2. HOX and E-box motifs are critical for limb and tail bud activity of the + 1 enhancer in vivo. (a) Nucleotide sequence alignment of the
+ 1 enhancer with conserved HOX (red) and Ebox (blue) motifs marked. Arrows indicate the boundaries of the 5" and 3’ deletion constructs.
(b) Representative transgenic mouse embryos at E12.5 showing whole-mount X-Gal reporter expression driven by wild-type and mutated + 1
enhancer constructs, with close-up views of limbs and tail bud regions shown to the right of each whole-mount view. Simultaneous mutation
of all six putative HOX binding sites (pP/lacZ/+ 1-HOX1-6) or homeoboxes located in 5’ region of +1 enhancer (pP/lacZ/+ 1-HOX1-3)
abolished staining in developing limbs and the PZ but did not affect endothelial or tail bud staining. Staining pattern of embryos carrying
mutation of homeoboxes located in 3’ region of + 1 enhancer (pP/lacZ/+ 1-HOX4-6) was indistinguishable from wild-type enhancer.
Simultaneous mutation of two E-boxes located in 5" region of + 1 enhancer (pP/lacZ/+ 1-5'-Ebox1-2) caused a significant reduction in tail
bud staining but did not affect staining in limbs and endothelium. Simultaneous mutation of three homeoboxes and two E-boxes located in
5' region of + 1 enhancer (pP/lacZ/ + 1-5'-HOX1-3/Ebox1-2) with only endothelial staining remaining.

Compared with their relatively recent implication in T-ALL,
HOXA genes have long been recognized as powerful mediators of
AML. To investigate whether HOXA activation in AML patients
coincides with activation of the LMO2 +1 enhancer, we
performed chromatin immunoprecipitation (ChIP)-on-chip analysis
in AML patients that expressed high levels of LMO2. Acetylation of
lysine 9 of histone 3 (H3K9) is a histone mark associated with

Oncogene (2013), 1-10

an open chromatin conformation and is generally observed
at promoters and enhancers of active genes. Results from a
representative subset of patients revealed a defined peak of H3K9
acetylation corresponding to the LMO2 +1 enhancer region
(Figure 4a; Supplementary Figure 3A) in patients that also showed
a broad region of elevated H3K9 acetylation across the HOXA
cluster including HOXA5, HOXA7 and HOXA9 (Figure 4b;

© 2013 Macmillan Publishers Limited
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Figure 3. A link between HOX activation and the LMO2 + 1 enhancer in leukaemia cells. (@) Normalized gene expression data for 72 T-ALL
patients having one of the major molecular cytogenetic abnormalities (TAL1, LMO2, HOXA, HOX11 and HOX11L2) shown by heatmap and
boxplot. Elevated levels of LMO2 are seen in both the LMO2 and HOXA categories. Corresponding P-values are shown. (b) HOXA5 can
transactivate the LMO2 + 1 enhancer. Transient co-transfection assays in 293T cells show significant activation of the wild-type enhancer
construct (pP/Luc/+ 1) but not the mutant enhancer with either first three or all HOX sites mutated (pP/Luc/+ THOX1-3mut and pP/Luc/
+ THOX1-6mut, respectively). Values are expressed relative to the control pcDNA3, and the mean and s.e.m. for at least two independent
transfections (each one performed in triplicate) are shown. (c) Normalized gene expression data for human CD34 " cells, obtained from cord
blood, transformed with the leukaemia fusion genes MLL-AF9 (n=9) or AML1-ETO (n=6) shown by boxplot. Greater levels of LMO2 can be
observed in the MLL-AF9 category. Corresponding P-value is shown.

Supplementary Figure 3B). Of note, these patients showed
high expression of LMO2, HOXA5 and HOXA9 (Supplementary
Figures 2B and 4B). Taken together, these observations are
consistent with a model whereby high levels of HOXA proteins in
AML cause activation of the LMO2 + 1 enhancer.

The LMO2 + 1 enhancer is active in MLL-ENL immortalized
leukaemic cells

Patients with MLL translocations are characterized by upregulation
of HOXA genes'®?? and can present with myeloid, lymphoid
or mixed phenotypes. Of note, interrogation of published gene
expression data sets?’ revealed elevated levels of LMO2 in AML
patients with MLL translocations (Figure 3c). To investigate the
possibility of a direct link between MLL-fusion activation of HOXA
genes and activity of the LMO2 + 1 enhancer in AML leukaemic
cells, we took advantage of a mouse cellular model where bone
marrow progenitors are immortalized with the fusion protein
MLL-ENL.?® These cells generate AML in vivo when transplanted

© 2013 Macmillan Publishers Limited

into lethally irradiated congenic recipients and upregulate
expression of Hox genes.?®

ChIP-on-chip analysis for H3K9 acetylation in these cells
(Figures 5a and b) revealed a pattern that was remarkably similar
to that previously observed in AML patients, with strong
enrichment at the Lmo2 + 1 enhancer region (Figure 5a). As for
the patient samples, enrichment over the Lmo2 + 1 enhancer was
accompanied by high levels of histone H3 acetylation at the HoxA
cluster (Figure 5b). We also performed in these cells ChIP analysis
for H3K4 monomethylation, a histone mark associated with active
enhancers, and we found high levels of this histone modification
at the Lmo2 -+ 1 region (Supplementary Figure 5) thus confirming
enhancer characteristics for this element. Furthermore, transfec-
tion experiments in these immortalized cells with constructs that
contained the luciferase gene under control of the LMO2 pP with
and without the +1 enhancer showed a specific increase in
luciferase activity in the presence of the enhancer, which was
completely abolished following simultaneous mutation of the first
three or all six HOX binding sites present in the LMO2 +1

Oncogene (2013), 1-10
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Figure 4. Acetylation of histone H3 lysine 9 indicates that the LMO2 + 1 enhancer is active in primary AML patient samples showing activation
of the HOXA cluster. (a) ChIP-on-chip analysis of the human LMO?2 locus in four patient samples shows a peak of H3 lysine 9 acetylation at the
LMO2 + 1 enhancer. MVista representation of human/mouse sequence conservation is shown at the top with the + 1 enhancer highlighted.
Annotations are as in Figure 2a. (b) ChlIP-on-chip analysis of the HOXA cluster shows elevated H3 lysine 9 acetylation across central/posterior
HOXA genes in the same four patient samples. Enrichment values are calculated as fold enrichment over the mean intensity across the whole

locus and expressed as log base 2.

enhancer (Figure 5c). Taken together, these experiments demon-
strate that the LMO2 +1 enhancer is active in MLL-ENL
immortalized myeloid leukaemic cells, and that this activity is
dependent on homeobox consensus binding sites.

Lmo2 knock-down impairs growth of MLL-ENL transduced
progenitors but does not abrogate leukaemic potential

We next explored potential roles for Lmo2 in controlling
proliferation of MLL-ENL transduced cells as well as their ability
to cause leukaemia following transplantation into irradiated
recipients. To this end, we transduced MLL-ENL immortalized
progenitors with a retrovirus expressing shRNA previously shown
to knock down the expression of mouse Lmo2. Transduced cells
express GFP as well as the shRNA of interest so that transduced
cells can be monitored during extended culturing. Cells
transduced with the Lmo2 knock-down construct showed
reduced expression of Lmo2 (Supplementary Figure 6A) and were
outgrown by untransduced cells after 25 days (Figure 5d).
Importantly, no such phenotype was observed when cells were

Oncogene (2013), 1-10

transduced with either empty vector or a negative control knock-
down construct. To confirm cell specificity of the observed
phenotype, we repeated the Lmo2 knock-down assays in a non-
leukaemogenic haematopoietic progenitor cell line (HPC-7) that
expresses high levels of Lmo2. In this case no effect could be
detected (Supplementary Figure 6B) even though Lmo2 expres-
sion was reduced to <25% of the level seen in controls
(Supplementary Figure 6C). We also performed similar experi-
ments in the human cell line U937 that carries the CALM-AF10
translocation where the importance of HOXA5 has been shown?*
(Supplementary Figure 7A). Similarly to the MLL-ENL cells, U937
transduced with a specific human LMO2 knock-down construct
was outgrown by untransduced cells. We also performed ChlP for
H3K9 acetylation and H3K4 monomethylation and transfection
experiments in these cells, which demonstrated that the
LMO2 + 1 enhancer is active in U937 myeloid cells, and that its
activity is dependent on homeobox consensus binding sites
(Supplementary Figures 7B and Q).

Lethally irradiated mice transplanted with MLL-ENL immorta-
lized bone marrow progenitors develop AML following a latency

© 2013 Macmillan Publishers Limited
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Figure 5. Levels of Lmo2 control proliferation in MLL-ENL transduced mouse leukaemic cells and correlate with overall survival in AML
patients. (@) MLL-ENL transduced mouse bone marrow cells show enhanced H3 lysine 9 acetylation at the Lmo2 + 1 similar to primary patient
samples. Shown is an MVista representation of mouse/human sequence conservation with -+ 1 enhancer highlighted, with a CHIP-on-chip
results shown underneath. Annotations are as in Figure 2a. (b) MLL-ENL transduced mouse bone marrow cells show enhanced H3 lysine 9
acetylation across the HoxA cluster similar to primary patient samples. An MVista representation of mouse/human sequence conservation
with the ChIP-on-chip results underneath is shown. Annotations are as in Figure 2a. (c) The LMO2 + 1 element functions as a transcriptional
enhancer in MLL-ENL transduced bone marrow progenitors. Cells were electroporated with luciferase reporter constructs containing the pP,
the promoter together with the wild-type + 1 enhancer, or the promoter with two different mutant versions of + 1 enhancer. Mean and
s.e.m. for at least two independent transfections (each one performed in triplicate) are shown. Values are expressed relative to the vector
containing the luciferase gene under the control of the minimal pP alone (pP-Luc). (d) Knock-down of Lmo2 in MLL-ENL transduced cells
results in a competitive growth disadvantage. MLL-ENL immortalized bone marrow progenitors were transduced with constructs containing
shRNA against Lmo2 (triangles) or luciferase (squares) as a control. GFP presence was monitored over 25 days after infection and percentages
of GFP-positive cells are indicated. The results from a representative experiment performed in duplicate are shown. (e) Overall survival over 3
years in a cohort of 79 AML patients shows statistically significant association with levels of LMO2 expression at diagnosis. Shown is a boxplot
of expression levels for patients with overall survival of less (left) and more (right) than 3 years, with the corresponding P-value shown at the
top right. (f) Lower LMO2 expression at diagnosis shows a strong association with improved survival. Kaplan-Meier survival curves for
AML patients with log 2 expression scores for LMO2 higher than 11.5 (blue curve) or lower than 11.5 (red curve) at diagnosis are shown.
Corresponding P-value is also shown.
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period of an average of 90-100 days, with leukaemic cells
expressing the myeloid surface markers Mac-1 and Gr-1 as well
as Lmo2.*® We hypothesized that maintenance of high Lmo2
levels could be important for the ability of these cells to cause
AML in vivo. We therefore transduced MLL-ENL immortalized
progenitors with retrovirus expressing shRNA against Lmo2 and,
following selection in puromycin, cells were transplantated into
lethally irradiated mice using co-transplanted normal bone
marrow cells as radioprotectant. No significant differences could
be observed in the latency period when Lmo2 was knocked down
compared with controls (data not shown). Reduction in expression
of Lmo2 was confirmed by quantitative real-time PCR before
transplantation and in bone marrow cells obtained from
leukaemic mice (Supplementary Figure 8). Our experiments
therefore suggest that reducing levels of Lmo2 expression impair
the growth of MLL-ENL immortalized progenitors when cultured
in vitro, but that these effects are offset in vivo, where the disease
latency is similar.

Levels of LMO2 expression at diagnosis can impact on patient
outcome in cytogenetically normal AML

To further explore potential consequences of elevated LMO2
expression levels in AML, we interrogated published gene
expression profiling data sets, specifically focusing on the
cytogenetically normal subset of AML patients, because there is
an unmet need to develop better prognostic markers within this
biologically heterogeneous group. Of note, overall survival for >3
years in a cohort of 79 cytogenetically normal AML patients*®
correlated specifically with lower levels of LMO2 at diagnosis
(P=0.0026; see Figure 5e). Moreover, when we partitioned all
patients based on high or low LMO2 expression (log2 expression
score higher than 11.5 (n =38) or lower than 11.5 (n =41)), a clear
correlation between patient outcome and levels of LMO2 at
diagnosis was noted (P =4.35e — 10; see Figure 5f). Similar results
were validated in an independent study of 134 patients
(Supplementary Figure 9). Taken together, therefore, the data
presented here suggest that potential roles for LMO?2 in leukaemia
may extend beyond its traditional function as a T-ALL oncogene,
and at least in some patients involve activation of an early
developmental HOX-LMO?2 regulatory hierarchy.

DISCUSSION

The LMO2 + 1 enhancer as a candidate target of HOX activity

in early development

LMO2 has thus far been studied predominantly in the context of
normal and malignant haematopoiesis. Here, we report compre-
hensive in vivo transgenic analysis of an LMO2 enhancer driving
non-haematopoietic expression. When analysed in detail, the non-
haematopoietic expression pattern defined by the + 1 enhancer
was very similar to that of the Lmo2 knock-in transgenic animals."®
Lmo2 expression in the posterior tail region is conserved in other
species such as Xenopus,?' and was adjacent to a region known to
contain multipotent neuromesodermal progenitors until about
day E12.5 of embryonic development3? Activity of the LMO2 + 1
enhancer in limb and tail bud regions depended on Hox and
E-box motifs, and was anatomically consistent with known
expression domains of HoxD and HoxA family members as well
as bHLH transcription factors.

Few downstream targets for either HOX or bHLH factors are
known at early developmental stages. Our results raise the
possibility that LMO2 may be an important functional mediator of
HOX and/or bHLH function. E9.5 LMO2 /~ embryos were
reported to be shorter than their wild-type littermates, consistent
with a role in posterior growth? and a Drosophila homologue of
LMO2 is involved in dorsal-ventral boundary and wing
patterning,®® suggesting an evolutionarily conserved function of
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LMO proteins in patterning. However, Lmo2 knockout embryos die
by E10.5% thus complicating analysis of Lmo2 function in tail bud
extension and patterning. Taken together, our analysis of LMO2
+ 1 enhancer function during mouse embryogenesis establishes a
previously unknown HOX/LMO?2 hierarchy, which may represent a
useful starting point for the wider dissection of regulatory
networks controlling early mesodermal/axial development.

An HOXA-LMO2 hierarchy is operational in a subset of acute
leukaemia patients
T-ALL is characterized by a number of distinct chromosomal
abnormalities as well as acquired mutations.>* Importantly, these
disparate initiating lesions cause similar disease phenotypes,
suggesting convergence on shared downstream leukaemogenic
pathways. Here, we propose one such shared pathway, the HOX-
LMO?2 axis, mediated via the LMO2 + 1 enhancer. The HOXA factor
with transactivation potential in our experiments was HOXAS5,
which is expressed at high levels in the presence of MLL
translocations'#** and has recently been shown to be critical for
the leukaemic phenotype in a mouse model of CALM-AF10 driven
T-ALL.2® Our data are consistent with a direct path from elevated
HOXA levels to ectopic expression of LMO2, and therefore provide
potential mechanistic insights into the dysregulation of
transcriptional programmes in a larger fraction of T-ALL patients.
We also demonstrate that the LMO2 + 1 enhancer is activated in
AML samples with elevated HOX expression, both in mouse
models and in primary patient samples. Information on
functionally relevant downstream mediators of HOX factors in
AML has remained surprisingly sparse although this may change
in the near future given the recent reports of genome-wide
mapping of HOXA9 binding sites in a mouse model of AML.3®
We obtained contrasting results following knock-down of Lmo2
in in vitro and in vivo experiments. In cell culture under cytokine-
mediated self-renewal conditions, high Lmo2 levels were asso-
ciated with a proliferative advantage, and therefore correlated
with the hyperproliferation/self-renewal phenotype reported by
McCormack et al” in T-cell progenitors ectopically expressing
high levels of Lmo2. Reducing Lmo2 levels did not however affect
latency of leukaemia onset in an adoptive transfer setting,
suggesting that elevated Lmo2 levels may be dispensable, or
that other mutations may compensate for their loss in the context
of this particular assay. However, four observations reinforce a
potential role for elevated LMO2 expression in leukaemias other
than T-ALL. First, we have recently reported LMO2 upregulation in
the evolution of leukaemia stem cell activity and disease
generation in a mouse model of AML3® Second, retroviral
integration screens for the identification of new contributors to
leukaemia development have reported integration into the
murine LMO2 locus not only in T-ALL but also in B-ALL and AML
(RTCGD database), with all translocations occurring 5" of the LMO2
coding region and thus presumably enhancing its expression.
Third, retroviral overexpression of LMO2 in Arf =/~ thymocytes
was recently reported to cause AML in mouse transplant models.*
Finally, we now report a correlation of high LMO2 levels at
diagnosis with patient outcome (this study). Given that LMO?2 is
able to confer self-renewal ability to thymic progenitors,®” it
is attractive to speculate that similar processes may have a role in
AML, which would be consistent both with the growth phenotype
observed in our knock-down studies and with the relatively
poor outcome associated with patients expressing high levels of
LMO2 (Figure 5f).

Aberrant resurrection of an embryonic regulatory hierarchy in
leukaemia cells

Similarities between cancers and embryonic tissues were first
reported nearly 200 years ago and gave rise to the so-called
‘embryonal rest’ theory of cancer,*® although contribution of
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embryonic stem cells to cancer is now largely discounted with the
exception of specific cancers such as teratocarcinoma. Tissue
stem/progenitor cells have more recently emerged as likely
targets for malignant transformation in a range of leukaemias as
well as solid cancers.*' Moreover, cancers themselves often
maintain a differentiation hierarchy and are maintained by
cancer stem cells.*?

Ectopic LMO2 expression in T-cell progenitors confers stem
cell-like properties giving rise to serially transplantable cells with
self-renewal properties.>’ These cells are thought to act as a
reservoir for the acquisition of additional mutagenic lesions that
will ultimately result in transformation to acute leukaemia.
Malignant transformation is therefore associated with an early
acquisition of tissue stem cell characteristics. Our analysis of the
LMO2 + 1 enhancer now shows that leukaemic cells can exploit
regulatory hierarchies resurrected from normal embryonic
development, and therefore provides molecular evidence for
parallels between early embryonic cells and cancer. Further
analysis of this redeployment of an embryonic gene regulatory
control mechanism not only revealed a previously unknown
mechanism underlying ectopic expression of LMO2, but also
suggested that elevated LMO2 levels may contribute to the
disease phenotype in AML. Finally, we would speculate that similar
phenomena may occur in other cancers, in that malignant cells
will redeploy components of regulatory networks outside of their
normal context if this provides a growth advantage.

MATERIALS AND METHODS
Custom arrays and ChIP-on-chip assays

Probes spanning the human LMO2 and HOXA loci (build hg18;
chr11:33834370-33871997 and chr7: 27091185-27213139, respectively)
and mouse Lmo2 and HoxA loci (build mm8; chr2: 103746756-103785459
and chr6: 52076700-52196929, respectively) were generated using eArray
software (Agilent Technologies, Wokingham, UK). Microarrays were printed
using Agilent’s SurePrint technology and ChlIP-chip assays were performed
as described.®

Patient samples

Peripheral blood samples were collected from patients with AML showing
>80% blasts. Informed consent was obtained in accordance with the
declaration of Helsinki and local ethical guidelines. Mononuclear fraction
was obtained by initial dilution 1:1 in phosphate-buffered saline, followed
by density gradient centrifugation using Histopaque (Sigma-Aldrich,
Dorset, UK). Cytogenetic information can be found in Supplementary
Figures 2 and 4A.

Transfection assays

MLL-ENL immortalized cells were transiently transfected and assayed as
described.”® For transactivation assays, 293T cells were transfected with
1 ug luciferase construct in combination with 3 ng of either pcDNA3SHOXA5
or pcDNA3HOXA7 (generous gift from Dr R Polakowska, La Celle et al*) or
pcDNA3HOXA9 (generous gift from Dr NR Yaseen, Washington University)
or the empty vector pcDNA3 as control using ProFection (Promega,
Southampton, UK). Each transfection and transactivation was performed
on at least 2 different days in triplicate. HOXA5 cDNA was obtained by PCR,
subsequently cloned in pcDNA3 and confirmed by sequencing.

Retroviral production and transduction

MLL-ENL cDNA subcloned into the pMSCV/IRES-Neomycin was kindly
provided by A Warren (Cambridge). Retroviral transduction of bone
marrow cells, serial replating and transplantation assays were performed as
described.*® Factor-dependent cells were generated by serial replating and
maintained in liquid medium supplemented with 6 ng/ml recombinant
interleukin 3 (Peprotech, London, UK). shRNA plasmid against Lmo2 was a
gift from Gerd Blobel (University of Pennsylvania, Tripic et al*®). Retrovirus
production was carried out using the pCL-Eco Retrovirus Packaging Vector
(Imgenex, San Diego, CA, USA). MLL-ENL inmmortalized cells were infected
with retrovirus by centrifugation using 4 pg/ml polybrene (Sigma-Aldrich)
and maintained in media supplemented with IL3.
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Reporter constructs and transgenic assays

Human enhancer sequences were used for reporter constructs. Detailed
information is available on request. Transgenic embryos were produced by
pronuclear injection, and analysed as previously described.® All animal
experiments were performed in accordance with United Kingdom Home
Office rules and were approved by Home Office inspectors.

Flow cytometry and competitive proliferation assay

GFP fluorescence analysis was performed using a FacsCalibur analyser (BD,
Oxford, UK). Dead cells were excluded using the 7-aminoactinomycin
(7AAD) stain. Competitive proliferation assays in liquid culture were
performed by monitoring the GFP-positive cell-fraction over a 25-day time
course.

Bioinformatic analysis

Expression data for 72 T-ALL patients classified by the major molecular
cytogenetic/expression  signatures were downloaded from GEO
(GSE10609'%). Expression data for 79 cytogenetically normal AML
patients were downloaded from GEO (GSE12417°°). Expression data from
human cord blood CD34 ™" cells, transformed with MLL-AF9 (n=9) and
AML1-ETO (n=6), were downloaded from GEO (GSE7011%). Heatmaps,
boxplots and Kaplan-Meier survival curves were generated using MATLAB
software (MathWorks, Cambridge, UK). Associated P-values were calculated
using Kolmogorov-Smirnov test.
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