288 research outputs found

    Testing the Trait-Based Community Framework: Do Functional Traits Predict Competitive Outcomes?

    Get PDF
    Plant traits can be used to understand a range of ecological processes, including competition from invasive species. The extent to which native and invasive species are competing via limiting similarity or trait hierarchies has important implications for the management of invaded communities. We screened 47 native species that co-occur with Festuca perennis, a dominant invader in California serpentine grassland, for traits pertaining to resource use and acquisition. We then grew F. perennis with ten species spanning a range of functional similarity in pairwise competition trials. Functionally similar species did not have a strong adverse effect on F. perennis performance as would be expected by limiting similarity theory. Phylogenetic relatedness, which may integrate a number of functional traits, was also a poor predictor of competitive outcome. Instead, species with high specific root length, low root to shoot biomass ratio, and low leaf nitrogen concentration were more effective at suppressing the growth of F. perennis. Our results suggest that fitness differences (i.e., trait hierarchies) may be more important than niche differences (i.e., limiting similarity) in structuring competitive outcomes in this system and may be a promising approach for the restoration of invaded systems

    Effects of growth rate, size, and light availability on tree survival across life stages: a demographic analysis accounting for missing values and small sample sizes.

    Get PDF
    The data set supporting the results of this article is available in the Dryad repository, http://dx.doi.org/10.5061/dryad.6f4qs. Moustakas, A. and Evans, M. R. (2015) Effects of growth rate, size, and light availability on tree survival across life stages: a demographic analysis accounting for missing values.Plant survival is a key factor in forest dynamics and survival probabilities often vary across life stages. Studies specifically aimed at assessing tree survival are unusual and so data initially designed for other purposes often need to be used; such data are more likely to contain errors than data collected for this specific purpose

    Therapeutic recreation as a developing profession in South Africa

    Get PDF
    South Africa experiences socio-economic challenges with a high prevalence of poverty resulting in disability and non-communicable diseases affecting the health and welfare of communities. Health services are not always accessible or available to citizens, especially those of previously disadvantaged or rural communities. The South African National Plan for Development 2030 aims to address these inequality and health issues. One focus area of this plan is the inclusion of recreation, leisure and sport as an important service sector to improve the health and well-being of all individuals. Therapeutic recreation could play an important role in this regard. In South Africa, therapeutic recreation is in its developmental stages. This paper aims to provide the reader with an overview of therapeutic recreation in South Africa as a developing profession. An overview of the current status of the profession is discussed in terms of standard of practice and as it relates to health professions and recreation service providers, programmes with therapeutic value and training needs. The study concludes that there is still groundwork to be done, calling for interested parties to embark on an aggressive advocacy and strategic planning process to develop therapeutic recreation as a profession in South Africa.Scopu

    Functional diversity underlies demographic responses to environmental variation in European forests: Tree diversity and demography in European forests

    Get PDF
    Aim  Biodiversity loss and climate-driven ecosystem modification are leading to substantial changes in forest structure and function. However, the effects of diversity on demographic responses to the environment are poorly understood. We tested the diversity hypothesis (measured through functional diversity) and the mass ratio hypothesis (measured through functional identity) in relation to tree growth, tree mortality and sapling abundance. We sought to determine whether functional diversity underlies demographic responses to environmental variation in European forests.  Location  Europe (Spain, Germany, Wallonia, Finland and Sweden).  Methods  We used data from five European national forest inventories from boreal to Mediterranean biomes (c. 700,000 trees in 54,000 plots and 143 tree species) and the main forest types across Europe (i.e. from needle-leaved evergreen forests to broad-leaved deciduous forests). For each forest type, we applied maximum likelihood techniques to quantify the relative importance of stand structure, climate and diversity (i.e. functional diversity and functional identity) as determinants of growth, mortality and sapling abundance. We also tested whether demographic responses to environmental conditions (including stand density, evapotranspiration and temperature anomalies) varied with functional diversity.  Results  Our results suggest that functional diversity has a positive effect on sapling abundance and growth rates in forests across Europe, while no effect was observed on tree mortality. Functional identity has a strong effect on mortality and sapling abundance, with greater mortality rates in forests dominated by needle-leaved individuals and a greater abundance of saplings in forests dominated by broad-leaved individuals. Furthermore, we observed that functional diversity modified the effects of stand density on demographic responses in Mediterranean forests and the influence of evapotranspiration and temperature anomalies in forests widely distributed across Europe.  Main conclusion  Our results suggest that functional diversity may play a key role in forest dynamics through complementarity mechanisms, as well as by modulating demographic responses to environmental variation

    Herbaceous perennial plants with short generation time have stronger responses to climate anomalies than those with longer generation time

    Get PDF
    There is an urgent need to synthesize the state of our knowledge on plant responses to climate. The availability of open-access data provide opportunities to examine quantitative generalizations regarding which biomes and species are most responsive to climate drivers. Here, we synthesize time series of structured population models from 162 populations of 62 plants, mostly herbaceous species from temperate biomes, to link plant population growth rates (λ) to precipitation and temperature drivers. We expect: (1) more pronounced demographic responses to precipitation than temperature, especially in arid biomes; and (2) a higher climate sensitivity in short-lived rather than long-lived species. We find that precipitation anomalies have a nearly three-fold larger effect on λ than temperature. Species with shorter generation time have much stronger absolute responses to climate anomalies. We conclude that key species-level traits can predict plant population responses to climate, and discuss the relevance of this generalization for conservation planning

    A synthesis of bacterial and archaeal phenotypic trait data

    Get PDF
    A synthesis of phenotypic and quantitative genomic traits is provided for bacteria and archaea, in the form of a scripted, reproducible workflow that standardizes and merges 26 sources. The resulting unified dataset covers 14 phenotypic traits, 5 quantitative genomic traits, and 4 environmental characteristics for approximately 170,000 strain-level and 15,000 species-aggregated records. It spans all habitats including soils, marine and fresh waters and sediments, host-associated and thermal. Trait data can find use in clarifying major dimensions of ecological strategy variation across species. They can also be used in conjunction with species and abundance sampling to characterize trait mixtures in communities and responses of traits along environmental gradients

    Functional traits and phenotypic plasticity modulate species coexistence across contrasting climatic conditions

    Get PDF
    Functional traits are expected to modulate plant competitive dynamics. However, how traits and their plasticity in response to contrasting environments connect with the mechanisms determining species coexistence remains poorly understood. Here, we couple field experiments under two contrasting climatic conditions to a plant population model describing competitive dynamics between 10 annual plant species in order to evaluate how 19 functional traits, covering physiological, morphological and reproductive characteristics, are associated with species’ niche and fitness differences. We find a rich diversity of univariate and multidimensional associations, which highlight the primary role of traits related to water- and lightuse- efficiency for modulating the determinants of competitive outcomes. Importantly, such traits and their plasticity promote species coexistence across climatic conditions by enhancing stabilizing niche differences and by generating competitive trade-offs between species. Our study represents a significant advance showing how leading dimensions of plant function connect to the mechanisms determining the maintenance of biodiversity

    Growth Strategies of Tropical Tree Species: Disentangling Light and Size Effects

    Get PDF
    An understanding of the drivers of tree growth at the species level is required to predict likely changes of carbon stocks and biodiversity when environmental conditions change. Especially in species-rich tropical forests, it is largely unknown how species differ in their response of growth to resource availability and individual size. We use a hierarchical Bayesian approach to quantify the impact of light availability and tree diameter on growth of 274 woody species in a 50-ha long-term forest census plot in Barro Colorado Island, Panama. Light reaching each individual tree was estimated from yearly vertical censuses of canopy density. The hierarchical Bayesian approach allowed accounting for different sources of error, such as negative growth observations, and including rare species correctly weighted by their abundance. All species grew faster at higher light. Exponents of a power function relating growth to light were mostly between 0 and 1. This indicates that nearly all species exhibit a decelerating increase of growth with light. In contrast, estimated growth rates at standardized conditions (5 cm dbh, 5% light) varied over a 9-fold range and reflect strong growth-strategy differentiation between the species. As a consequence, growth rankings of the species at low (2%) and high light (20%) were highly correlated. Rare species tended to grow faster and showed a greater sensitivity to light than abundant species. Overall, tree size was less important for growth than light and about half the species were predicted to grow faster in diameter when bigger or smaller, respectively. Together light availability and tree diameter only explained on average 12% of the variation in growth rates. Thus, other factors such as soil characteristics, herbivory, or pathogens may contribute considerably to shaping tree growth in the tropics

    Large-scale assessment of regeneration and diversity in Mediterranean planted pine forests along ecological gradients

    Get PDF
    15 pages, 4 figures, 4 tables, 87 references.There is increasing concern regarding sustainable management and restoration of planted forests, particularly in the Mediterranean Basin where pine species have been widely used. The aim of this study was to analyse the environmental and structural characteristics of Mediterranean planted pine forests in relation to natural pine forests. Specifically, we assessed recruitment and woody species richness along climatic, structural and perturbation gradients to aid in developing restoration guidelines.Location Continental Spain. We conducted a multivariate comparison of ecological characteristics in planted and natural stands of main Iberian native pine species (Pinus halepensis, Pinus pinea, Pinus pinaster, Pinus nigra and Pinus sylvestris). We fitted species-specific statistical models of recruitment and woody species richness and analysed the response of natural and planted stands along ecological gradients. Planted pine forests occurred on average on poorer soils and experienced higher anthropic disturbance rates (fire frequency and anthropic mortality) than natural pine forests. Planted pine forests had lower regeneration and diversity levels than natural pine forests, and these differences were more pronounced in mountain pine stands. The largest differences in recruitment – chiefly oak seedling abundance – and species richness between planted and natural stands occurred at low-medium values of annual precipitation, stand tree density, distance to Quercus forests and fire frequency, whereas differences usually disappeared in the upper part of the gradients.Main conclusions Structural characteristics and patterns of recruitment and species richness differ in pine planted forests compared to natural pine ecosystems in the Mediterranean, especially for mountain pines. However, management options exist that would reduce differences between these forest types, where restoration towards more natural conditions is feasible. To increase recruitment and diversity, vertical and horizontal heterogeneity could be promoted by thinning in high-density and homogeneous stands, while enrichment planting would be desirable in mesic and medium-density planted forests.This research was supported by INTERBOS3-CGL2008-04503- C03-03 (MCI) and SUM2008-00004-C03-01 (INIA) projects. P.R.B. was supported by a FPU fellowship from the Spanish MEC (AP2008-01325). We thank the MARM (Ministerio de Medio Ambiente, Medio Rural y Marino, Dirección General de Medio Natural y Política Forestal) for granting the access to the Spanish Forest Inventory Data.Peer reviewe
    corecore