34 research outputs found

    Different Evolutionary Modifications as a Guide to Rewire Two-Component Systems

    Get PDF
    Two-component systems (TCS) are short signalling pathways generally occurring in prokaryotes. They frequently regulate prokaryotic stimulus responses and thus are also of interest for engineering in biotechnology and synthetic biology. The aim of this study is to better understand and describe rewiring of TCS while investigating different evolutionary scenarios. Based on large-scale screens of TCS in different organisms, this study gives detailed data, concrete alignments, and structure analysis on three general modification scenarios, where TCS were rewired for new responses and functions: (i) exchanges in the sequence within single TCS domains, (ii) exchange of whole TCS domains; (iii) addition of new components modulating TCS function. As a result, the replacement of stimulus and promotor cassettes to rewire TCS is well defined exploiting the alignments given here. The diverged TCS examples are non-trivial and the design is challenging. Designed connector proteins may also be useful to modify TCS in selected cases

    Meta-analysis of Genome-Wide Association Studies for Extraversion: Findings from the Genetics of Personality Consortium

    Get PDF
    Extraversion is a relatively stable and heritable personality trait associated with numerous psychosocial, lifestyle and health outcomes. Despite its substantial heritability, no genetic variants have been detected in previous genome-wide association (GWA) studies, which may be due to relatively small sample sizes of those studies. Here, we report on a large meta-analysis of GWA studies for extraversion in 63,030 subjects in 29 cohorts. Extraversion item data from multiple personality inventories were harmonized across inventories and cohorts. No genome-wide significant associations were found at the single nucleotide polymorphism (SNP) level but there was one significant hit at the gene level for a long non-coding RNA site (LOC101928162). Genome-wide complex trait analysis in two large cohorts showed that the additive variance explained by common SNPs was not significantly different from zero, but polygenic risk scores, weighted using linkage information, significantly predicted extraversion scores in an independent cohort. These results show that extraversion is a highly polygenic personality trait, with an architecture possibly different from other complex human traits, including other personality traits. Future studies are required to further determine which genetic variants, by what modes of gene action, constitute the heritable nature of extraversion

    Meta-analysis of genome-wide association studies for extraversion:Findings from the Genetics of Personality Consortium

    Get PDF
    Extraversion is a relatively stable and heritable personality trait associated with numerous psychosocial, lifestyle and health outcomes. Despite its substantial heritability, no genetic variants have been detected in previous genome-wide association (GWA) studies, which may be due to relatively small sample sizes of those studies. Here, we report on a large meta-analysis of GWA studies for extraversion in 63,030 subjects in 29 cohorts. Extraversion item data from multiple personality inventories were harmonized across inventories and cohorts. No genome-wide significant associations were found at the single nucleotide polymorphism (SNP) level but there was one significant hit at the gene level for a long non-coding RNA site (LOC101928162). Genome-wide complex trait analysis in two large cohorts showed that the additive variance explained by common SNPs was not significantly different from zero, but polygenic risk scores, weighted using linkage information, significantly predicted extraversion scores in an independent cohort. These results show that extraversion is a highly polygenic personality trait, with an architecture possibly different from other complex human traits, including other personality traits. Future studies are required to further determine which genetic variants, by what modes of gene action, constitute the heritable nature of extraversion

    Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals

    Get PDF
    We conduct a genome-wide association study (GWAS) of educational attainment (EA) in a sample of ~3 million individuals and identify 3,952 approximately uncorrelated genome-wide-significant single-nucleotide polymorphisms (SNPs). A genome-wide polygenic predictor, or polygenic index (PGI), explains 12-16% of EA variance and contributes to risk prediction for ten diseases. Direct effects (i.e., controlling for parental PGIs) explain roughly half the PGI's magnitude of association with EA and other phenotypes. The correlation between mate-pair PGIs is far too large to be consistent with phenotypic assortment alone, implying additional assortment on PGI-associated factors. In an additional GWAS of dominance deviations from the additive model, we identify no genome-wide-significant SNPs, and a separate X-chromosome additive GWAS identifies 57

    Genome-wide association study identifies 74 loci associated with educational attainment

    Get PDF
    Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals1. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample1,2 of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases

    Neuronal cGMP kinase I is essential for stimulation of duodenal bicarbonate secretion by luminal acid

    No full text
    Singh AK, Spieβberger B, Zheng W, et al. Neuronal cGMP kinase I is essential for stimulation of duodenal bicarbonate secretion by luminal acid. The FASEB Journal. 2011;26(4):1745-1754.Brief contact of the duodenal mucosa with luminal acid elicits a long-lasting bicarbonate (HCO3-) secretory response, which is believed to be the primary protective mechanism against mucosal damage. Here, we show that cGMP-dependent protein kinase type I-knock-out (cGKI-/-) mice are unable to respond to a physiological H+ stimulus with a HCO3- secretory response and spontaneously develop duodenal ulcerations. Smooth muscle-selective cGKI knock-in rescued the motility disturbance but not the defective HCO3- secretion. Proton-induced HCO3- secretion was not attenuated by selective inactivation of the cGKI gene in interstitial cells of Cajal or in enterocytes, but was abolished by inactivation of cGKI in neurons (ncGKI-/-). cGKI was expressed in the brainstem nucleus tractus solitarius that connects the afferent with the efferent N. vagus. Accordingly, truncation of the subdiaphragmal N. vagus significantly diminished proton-induced HCO3- secretion in wild-type mice, whereas stimulation of the subdiaphragmal N. vagus elicited a similar HCO3- secretory response in cGKI-/-, ncGKI-/- and wild-type mice. These findings show that protection of the duodenum from acid injury requires neuronal cGKI.—Singh, A. K., Spieβberger, B., Zheng, W., Xiao, F., Lukowski, R., Wegener, J. W., Weinmeister, P., Saur, D., Klein, S., Schemann, M., Krueger, D., Seidler, U., Hofmann, F. Neuronal cGMP kinase I is essential for stimulation of duodenal bicarbonate secretion by luminal acid. FASEB J. 26, 1745-1754 (2012). www.fasebj.or
    corecore