312 research outputs found

    Hypertension in mice lacking 11beta-hydroxysteroid dehydrogenase type 2

    Get PDF
    Deficiency of 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) in humans leads to the syndrome of apparent mineralocorticoid excess (SAME), in which cortisol illicitly occupies mineralocorticoid receptors, causing sodium retention, hypokalemia, and hypertension. However, the disorder is usually incompletely corrected by suppression of cortisol, suggesting additional and irreversible changes, perhaps in the kidney. To examine this further, we produced mice with targeted disruption of the 11β-HSD2 gene. Homozygous mutant mice (11β-HSD2(–/–)) appear normal at birth, but ∼50% show motor weakness and die within 48 hours. Both male and female survivors are fertile but exhibit hypokalemia, hypotonic polyuria, and apparent mineralocorticoid activity of corticosterone. Young adult 11β-HSD2(–/–) mice are markedly hypertensive, with a mean arterial blood pressure of 146 ± 2 mmHg, compared with 121 ± 2 mmHg in wild-type controls and 114 ± 4 mmHg in heterozygotes. The epithelium of the distal tubule of the nephron shows striking hypertrophy and hyperplasia. These histological changes do not readily reverse with mineralocorticoid receptor antagonism in adulthood. Thus, 11β-HSD2(–/–) mice demonstrate the major features of SAME, providing a unique rodent model to study the molecular mechanisms of kidney resetting leading to hypertension. J. Clin. Invest. 103:683–689 (1999

    11 beta-Hydroxysteroid dehydrogenase type 1 contributes to the regulation of 7-oxysterol levels in the arterial wall through the inter-conversion of 7-ketocholesterol and 7 beta-hydroxycholesterol

    Get PDF
    AbstractThe atherogenic 7-oxysterols, 7-ketocholesterol (7-KC) and 7β-hydroxycholesterol (7βOHC), can directly impair arterial function. Inter-conversion of 7-KC and 7βOHC has recently been shown as a novel role for the glucocorticoid-metabolizing enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Since this enzyme is expressed in vascular smooth muscle cells, we addressed the hypothesis that inter-conversion of 7-KC and 7βOHC by 11β-HSD1 may contribute to regulation of arterial function.Incubation (4–24 h) of aortic rings with either 7-KC (25 μM) or 7βOHC (20 μM) had no effect on endothelium-dependent (acetylcholine) or -independent (sodium nitroprusside) relaxation. In contrast, exposure to 7-KC (but not to 7βOHC) attenuated noradrenaline-induced contraction (Emax) after 4 h (0.78 ± 0.28 vs 0.40 ± 0.08 mN/mm; p < 0.05) and 24 h (2.28 ± 0.34 vs 1.56 ± 0.48 mN/mm; p < 0.05). Both 7-oxysterols were detected by GCMS in the aortic wall of chow-fed C57Bl6/J mice, with concentrations of 7-KC (1.41 ± 0.81 ng/mg) higher (p = 0.05) than 7βOHC (0.16 ± 0.06 ng/mg). In isolated mouse aortic rings 11β-HSD1 was shown to act as an oxo-reductase, inter-converting 7-KC and 7βOHC. This activity was lost in aorta from 11β-HSD1−/− mice, which had low oxysterol levels. Renal homogenates from 11β-HSD1−/− mice were used to confirm that the type 2 isozyme of 11β-HSD does not inter-convert 7-KC and 7βOHC.These results demonstrate that 7-KC has greater effects than 7βOHC on vascular function, and that 11β-HSD1 can inter-convert 7-KC and 7βOHC in the arterial wall, contributing to the regulation of 7-oxysterol levels and potentially influencing vascular function. This mechanism may be important in the cardioprotective effects of 11β-HSD1 inhibitors

    Caffeine Reduces 11β-Hydroxysteroid Dehydrogenase Type 2 Expression in Human Trophoblast Cells through the Adenosine A2B Receptor

    Get PDF
    Maternal caffeine consumption is associated with reduced fetal growth, but the underlying molecular mechanisms are unknown. Since there is evidence that decreased placental 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) is linked to fetal growth restriction, we hypothesized that caffeine may inhibit fetal growth partly through down regulating placental 11β-HSD2. As a first step in examining this hypothesis, we studied the effects of caffeine on placental 11β-HSD2 activity and expression using our established primary human trophoblast cells as an in vitro model system. Given that maternal serum concentrations of paraxanthine (the primary metabolite of caffeine) were greater in women who gave birth to small-for-gestational age infants than to appropriately grown infants, we also studied the effects of paraxanthine. Our main findings were: (1) both caffeine and paraxanthine decreased placental 11β-HSD2 activity, protein and mRNA in a concentration-dependent manner; (2) this inhibitory effect was mediated by the adenosine A2B receptor, since siRNA-mediated knockdown of this receptor prevented caffeine- and paraxanthine-induced inhibition of placental 11β-HSD2; and (3) forskolin (an activator of adenyl cyclase and a known stimulator of 11β-HSD2) abrogated the inhibitory effects of both caffeine and paraxanthine, which provides evidence for a functional link between exposure to caffeine and paraxanthine, decreased intracellular levels of cAMP and reduced placental 11β-HSD2. Taken together, these findings reveal that placental 11β-HSD2 is a novel molecular target through which caffeine may adversely affect fetal growth. They also uncover a previously unappreciated role for the adenosine A2B receptor signaling in regulating placental 11β-HSD2, and consequently fetal development

    Mineralocorticoid and glucocorticoid receptors in the brain. Implications for ion permeability and transmitter systems

    Full text link
    • …
    corecore