88 research outputs found

    Updating the mechanisms of common fragile site instability: how to reconcile the different views?

    Get PDF
    Common fragile sites (CFSs) are large chromosomal regions long identified by conventional cytogenetics as sequences prone to breakage in cells subjected to replication stress. The interest in CFSs came from their key role in the formation of DNA damage, resulting in chromosomal rearrangements. The instability of CFSs was notably correlated with the appearance of genome instability in precancerous lesions and during tumor progression. Identification of the molecular mechanisms responsible for their instability therefore represents a major challenge. A number of data show that breaks result from mitotic entry before replication completion but the mechanisms responsible for such delayed replication of CFSs and relaxed checkpoint surveillance are still debated. In addition, clues to the molecular events leading to breakage just start to emerge. We present here the results of recent reports addressing these questions

    USP37 deubiquitinates Cdt1 and contributes to regulate DNA replication

    Get PDF
    DNA replication control is a key process in maintaining genomic integrity. Monitoring DNA replication initiation is particularly important as it needs to be coordinated with other cellular events and should occur only once per cell cycle. Crucial players in the initiation of DNA replication are the ORC protein complex, marking the origin of replication, and the Cdt1 and Cdc6 proteins, that license these origins to replicate by recruiting the MCM2-7 helicase. To accurately achieve its functions, Cdt1 is tightly regulated. Cdt1 levels are high from metaphase and during G1 and low in S/G2 phases of the cell cycle. This control is achieved, among other processes, by ubiquitination and proteasomal degradation. In an overexpression screen for Cdt1 deubiquitinating enzymes, we isolated USP37, to date the first ubiquitin hydrolase controlling Cdt1. USP37 overexpression stabilizes Cdt1, most likely a phosphorylated form of the protein. In contrast, USP37 knock down destabilizes Cdt1, predominantly during G1 and G1/S phases of the cell cycle. USP37 interacts with Cdt1 and is able to de-ubiquitinate Cdt1 in vivo and, USP37 is able to regulate the loading of MCM complexes onto the chromatin. In addition, downregulation of USP37 reduces DNA replication fork speed. Taken together, here we show that the deubiquitinase USP37 plays an important role in the regulation of DNA replication. Whether this is achieved via Cdt1, a central protein in this process, which we have shown to be stabilized by USP37, or via additional factors, remains to be tested.The authors are grateful to V. Smits for careful reading of the manuscript. This work was supported by grants from the Spanish Ministry of Economy and Competitiveness (SAF2013-49149-R, BFU2014-51672-REDC), Instituto de Salud Carlos III (BA15/00092) and Fundacion CajaCanarias (AP2015/008) to RF.S

    The extent of error-prone replication-restart by homologous recombination is controlled by Exo1 and checkpoint proteins

    Get PDF
    Genetic instability, a hallmark of cancer, can occur when the replication machinery encounters a barrier. The intra-S phase checkpoint maintains stalled replication forks in a replication-competent configuration by phosphorylating replisome components and DNA repair proteins to prevent forks from catastrophically collapsing. Here we report a novel Chk1- and Cds1Chk2-independent function for Rad3ATR, the core S. pombe checkpoint sensor kinase: Rad3ATR regulates the association of recombination factors with collapsed forks thus limiting their genetic instability. We further reveal antagonistic roles for Rad3ATR and the 9-1-1 clamp: Rad3ATR restrains MRN- and Exo1-dependent resection while the 9-1-1 complex promotes Exo1 activity. Interestingly the MRN complex, but not its nuclease activity, promotes resection and the subsequent association of recombination factors at collapsed forks. The biological significance of this regulation is revealed by the observation that Rad3ATR prevents Exo1-dependent genome instability upstream a collapsed fork without affecting the efficiency of recombination-mediated replication-restart. We propose the interplay between Rad3ATR and the 9-1-1 clamp functions to fine-tune the balance between the need for recovery of replication via recombination and the risk of increased genome instability

    Cell cycle-specific UNG2 phosphorylations regulate protein turnover, activity and association with RPA

    Get PDF
    Human UNG2 is a multifunctional glycosylase that removes uracil near replication forks and in non-replicating DNA, and is important for affinity maturation of antibodies in B cells. How these diverse functions are regulated remains obscure. Here, we report three new phosphoforms of the non-catalytic domain that confer distinct functional properties to UNG2. These are apparently generated by cyclin-dependent kinases through stepwise phosphorylation of S23, T60 and S64 in the cell cycle. Phosphorylation of S23 in late G1/early S confers increased association with replication protein A (RPA) and replicating chromatin and markedly increases the catalytic turnover of UNG2. Conversely, progressive phosphorylation of T60 and S64 throughout S phase mediates reduced binding to RPA and flag UNG2 for breakdown in G2 by forming a cyclin E/c-myc-like phosphodegron. The enhanced catalytic turnover of UNG2 p-S23 likely optimises the protein to excise uracil along with rapidly moving replication forks. Our findings may aid further studies of how UNG2 initiates mutagenic rather than repair processing of activation-induced deaminase-generated uracil at Ig loci in B cells

    Phosphorylation of human Fen1 by cyclin-dependent kinase modulates its role in replication fork regulation.

    Full text link
    Cyclin-dependent kinase (Cdk) Cdk1-Cyclin A can phosphorylate Flap endonuclease 1 (Fen1), a key-enzyme of the DNA replication machinery, in late S phase. Cdk1-cyclin A forms a complex in vitro and in vivo with Fen1. Furthermore, Fen1 phosphorylation is detected in vivo and depends upon Cdks activity. As a functional consequence of phosphorylation by Cdk1-Cyclin A in vitro, endo- and exonuclease activities of Fen1 are reduced whereas its DNA binding is not affected. Moreover, phosphorylation of Fen1 by Cdk1-Cyclin A abrogates its proliferating cell nuclear antigen (PCNA) binding thus preventing stimulation of Fen1 by PCNA. Concomitantly, human cells expressing the S187A mutant defective for Cdk1-Cyclin A phosphorylation accumulate in S phase consistent with a failure in cell cycle regulation through DNA replication. Our results suggest a novel regulatory role of Cdks onto the end of S phase by targeting directly a key enzyme involved in DNA replication

    The Telomeric Protein TRF2 Regulates Replication Origin Activity within Pericentromeric Heterochromatin

    No full text
    Heterochromatic regions render the replication process particularly difficult due to the high level of chromatin compaction and the presence of repeated DNA sequences. In humans, replication through pericentromeric heterochromatin requires the binding of a complex formed by the telomeric factor TRF2 and the helicase RTEL1 in order to relieve topological barriers blocking fork progression. Since TRF2 is known to bind the Origin Replication Complex (ORC), we hypothesized that this factor could also play a role at the replication origins (ORI) of these heterochromatin regions. By performing DNA combing analysis, we found that the ORI density is higher within pericentromeric satellite DNA repeats than within bulk genomic DNA and decreased upon TRF2 downregulation. Moreover, we showed that TRF2 and ORC2 interact in pericentromeric DNA, providing a mechanism by which TRF2 is involved in ORI activity. Altogether, our findings reveal an essential role for TRF2 in pericentromeric heterochromatin replication by regulating both replication initiation and elongation

    Stepwise Activation of the ATR Signaling Pathway upon Increasing Replication Stress Impacts Fragile Site Integrity

    Get PDF
    <div><p>Breaks at common fragile sites (CFS) are a recognized source of genome instability in pre-neoplastic lesions, but how such checkpoint-proficient cells escape surveillance and continue cycling is unknown. Here we show, in lymphocytes and fibroblasts, that moderate replication stresses like those inducing breaks at CFSs trigger chromatin loading of sensors and mediators of the ATR pathway but fail to activate Chk1 or p53. Consistently, we found that cells depleted of ATR, but not of Chk1, accumulate single-stranded DNA upon Mre11-dependent resection of collapsed forks. Partial activation of the pathway under moderate stress thus takes steps against fork disassembly but tolerates S-phase progression and mitotic onset. We show that fork protection by ATR is crucial to CFS integrity, specifically in the cell type where a given site displays paucity in backup replication origins. Tolerance to mitotic entry with under-replicated CFSs therefore results in chromosome breaks, providing a pool of cells committed to further instability.</p></div
    • 

    corecore