143 research outputs found

    A primer for ZooMS applications in archaeology

    Get PDF
    Collagen peptide mass fingerprinting by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, also known as zooarchaeology by mass spectrometry (ZooMS), is a rapidly growing analytical technique in the fields of archaeology, ecology, and cultural heritage. Minimally destructive and cost effective, ZooMS enables rapid taxonomic identification of large bone assemblages, cultural heritage objects, and other organic materials of animal origin. As its importance grows as both a research and a conservation tool, it is critical to ensure that its expanding body of users understands its fundamental principles, strengths, and limitations. Here, we outline the basic functionality of ZooMS and provide guidance on interpreting collagen spectra from archaeological bones. We further examine the growing potential of applying ZooMS to nonmammalian assemblages, discuss available options for minimally and nondestructive analyses, and explore the potential for peptide mass finger-printing to be expanded to noncollagenous proteins. We describe the current limitations of the method regarding accessibility, and we propose solutions for the future. Finally, we review the explosive growth of ZooMS over the past decade and highlight the remarkably diverse applications for which the technique is suited

    Differential patterns of intronic and exonic DNA regions with respect to RNA polymerase II occupancy, nucleosome density and H3K36me3 marking in fission yeast

    Get PDF
    BACKGROUND: The generation of mature mRNAs involves interconnected processes, including transcription by RNA polymerase II (Pol II), modification of histones, and processing of pre-mRNAs through capping, intron splicing, and polyadenylation. These processes are thought to be integrated, both spatially and temporally, but it is unclear how these connections manifest at a global level with respect to chromatin patterns and transcription kinetics. We sought to clarify the relationships between chromatin, transcription and splicing using multiple genome-wide approaches in fission yeast. RESULTS: To investigate these functional interdependencies, we determined Pol II occupancy across all genes using high-density tiling arrays. We also performed ChIP-chip on the same array platform to globally map histone H3 and its H3K36me3 modification, complemented by formaldehyde-assisted isolation of regulatory elements (FAIRE). Surprisingly, Pol II occupancy was higher in introns than in exons, and this difference was inversely correlated with gene expression levels at a global level. Moreover, introns showed distinct distributions of histone H3, H3K36me3 and FAIRE signals, similar to those at promoters and terminators. These distinct transcription and chromatin patterns of intronic regions were most pronounced in poorly expressed genes. CONCLUSIONS: Our findings suggest that Pol II accumulates at the 3 ends of introns, leading to substantial transcriptional delays in weakly transcribed genes. We propose that the global relationship between transcription, chromatin remodeling, and splicing may reflect differences in local nuclear environments, with highly expressed genes being associated with abundant processing factors that promote effective intron splicing and transcriptional elongation

    TORC1 signaling inhibition by rapamycin and caffeine affect lifespan, global gene expression, and cell proliferation of fission yeast.

    Get PDF
    Target of rapamycin complex 1 (TORC1) is implicated in growth control and aging from yeast to humans. Fission yeast is emerging as a popular model organism to study TOR signaling, although rapamycin has been thought to not affect cell growth in this organism. Here, we analyzed the effects of rapamycin and caffeine, singly and combined, on multiple cellular processes in fission yeast. The two drugs led to diverse and specific phenotypes that depended on TORC1 inhibition, including prolonged chronological lifespan, inhibition of global translation, inhibition of cell growth and division, and reprograming of global gene expression mimicking nitrogen starvation. Rapamycin and caffeine differentially affected these various TORC1-dependent processes. Combined drug treatment augmented most phenotypes and effectively blocked cell growth. Rapamycin showed a much more subtle effect on global translation than did caffeine, while both drugs were effective in prolonging chronological lifespan. Rapamycin and caffeine did not affect the lifespan via the pH of the growth media. Rapamycin prolonged the lifespan of nongrowing cells only when applied during the growth phase but not when applied after cells had stopped proliferation. The doses of rapamycin and caffeine strongly correlated with growth inhibition and with lifespan extension. This comprehensive analysis will inform future studies into TORC1 function and cellular aging in fission yeast and beyond

    Tuberculosis among economic migrants: a cross-sectional study of the risk of poor treatment outcomes and impact of a treatment adherence intervention among temporary residents in an urban district in Ho Chi Minh City, Viet Nam.

    Get PDF
    BACKGROUND Tuberculosis (TB) remains a major cause of avoidable deaths. Economic migrants represent a vulnerable population due to their exposure to medical and social risk factors. These factors expose them to higher risks for TB incidence and poor treatment outcomes. METHODS This cross-sectional study evaluated WHO-defined TB treatment outcomes among economic migrants in an urban district of Ho Chi Minh City, Viet Nam. We measured the association of a patient's government-defined residency status with treatment success and loss to follow-up categories at baseline and performed a comparative interrupted time series (ITS) analysis to assess the impact of community-based adherence support on treatment outcomes. Key measures of interest of the ITS were the differences in step change (β) and post-intervention trend (β). RESULTS Short-term, inter-province migrants experienced lower treatment success (aRR = 0.95 [95% CI: 0.92-0.99], p = 0.010) and higher loss to follow-up (aOR = 1.98 [95% CI: 1.44-2.72], p  55 years of age (aRR = 0.93 [95% CI: 0.89-0.96], p < 0.001), relapse patients (aRR = 0.89 [95% CI: 0.84-0.94], p < 0.001), and retreatment patients (aRR = 0.62 [95% CI: 0.52-0.75], p < 0.001) had lower treatment success rates. TB/HIV co-infection was also associated with lower treatment success (aRR = 0.77 [95% CI: 0.73-0.82], p < 0.001) and higher loss to follow-up (aOR = 2.18 [95% CI: 1.55-3.06], p < 0.001). The provision of treatment adherence support increased treatment success (IRR(β) = 1.07 [95% CI: 1.00, 1.15], p = 0.041) and reduced loss to follow-up (IRR(β) = 0.17 [95% CI: 0.04, 0.69], p = 0.013) in the intervention districts. Loss to follow-up continued to decline throughout the post-implementation period (IRR(β) = 0.90 [95% CI: 0.83, 0.98], p = 0.019). CONCLUSIONS Economic migrants, particularly those crossing provincial borders, have higher risk of poor treatment outcomes and should be prioritized for tailored adherence support. In light of accelerating urbanization in many regions of Asia, implementation trials are needed to inform evidence-based design of strategies for this vulnerable population

    The extent of error-prone replication-restart by homologous recombination is controlled by Exo1 and checkpoint proteins

    Get PDF
    Genetic instability, a hallmark of cancer, can occur when the replication machinery encounters a barrier. The intra-S phase checkpoint maintains stalled replication forks in a replication-competent configuration by phosphorylating replisome components and DNA repair proteins to prevent forks from catastrophically collapsing. Here we report a novel Chk1- and Cds1Chk2-independent function for Rad3ATR, the core S. pombe checkpoint sensor kinase: Rad3ATR regulates the association of recombination factors with collapsed forks thus limiting their genetic instability. We further reveal antagonistic roles for Rad3ATR and the 9-1-1 clamp: Rad3ATR restrains MRN- and Exo1-dependent resection while the 9-1-1 complex promotes Exo1 activity. Interestingly the MRN complex, but not its nuclease activity, promotes resection and the subsequent association of recombination factors at collapsed forks. The biological significance of this regulation is revealed by the observation that Rad3ATR prevents Exo1-dependent genome instability upstream a collapsed fork without affecting the efficiency of recombination-mediated replication-restart. We propose the interplay between Rad3ATR and the 9-1-1 clamp functions to fine-tune the balance between the need for recovery of replication via recombination and the risk of increased genome instability

    LaSSO, a strategy for genome-wide mapping of intronic lariats and branch points using RNA-seq

    Get PDF
    Both canonical and alternative splicing of RNAs are governed by intronic sequence elements and produce transient lariat structures fastened by branch points within introns. To map precisely the location of branch points on a genomic scale, we developed LaSSO (Lariat Sequence Site Origin), a data-driven algorithm which utilizes RNA-seq data. Using fission yeast cells lacking the debranching enzyme Dbr1, LaSSO not only accurately identified canonical splicing events, but also pinpointed novel, but rare, exon-skipping events, which may reflect aberrantly spliced transcripts. Compromised intron turnover perturbed gene regulation at multiple levels, including splicing and protein translation. Notably, Dbr1 function was also critical for the expression of mitochondrial genes and for the processing of self-spliced mitochondrial introns. LaSSO showed better sensitivity and accuracy than algorithms used for computational branch-point prediction or for empirical branch-point determination. Even when applied to a human data set acquired in the presence of debranching activity, LaSSO identified both canonical and exon-skipping branch points. LaSSO thus provides an effective approach for defining high-resolution maps of branch-site sequences and intronic elements on a genomic scale. LaSSO should be useful to validate introns and uncover branch-point sequences in any eukaryote, and it could be integrated into RNA-seq pipelines

    A comparative impact evaluation of two human resource models for community-based active tuberculosis case finding in Ho Chi Minh City, Viet Nam

    Get PDF
    Background: To achieve the WHO End TB Strategy targets, it is necessary to detect and treat more people with active TB early. Scale–up of active case finding (ACF) may be one strategy to achieve that goal. Given human resource constraints in the health systems of most high TB burden countries, volunteer community health workers (CHW) have been widely used to economically scale up TB ACF. However, more evidence is needed on the most cost-effective compensation models for these CHWs and their potential impact on case finding to inform optimal scale-up policies. Methods: We conducted a two-year, controlled intervention study in 12 districts of Ho Chi Minh City, Viet Nam. We engaged CHWs as salaried employees (3 districts) or incentivized volunteers (3 districts) to conduct ACF among contacts of people with TB and urban priority groups. Eligible persons were asked to attend health services for radiographic screening and rapid molecular diagnosis or smear microscopy. Individuals diagnosed with TB were linked to appropriate care. Six districts providing routine NTP care served as control area. We evaluated additional cases notified and conducted comparative interrupted time series (ITS) analyses to assess the impact of ACF by human resource model on TB case notifications. Results: We verbally screened 321,020 persons in the community, of whom 70,439 were eligible for testing and 1138 of them started TB treatment. ACF activities resulted in a + 15.9% [95% CI: + 15.0%, + 16.7%] rise in All Forms TB notifications in the intervention areas compared to control areas. The ITS analyses detected significant positive post-intervention trend differences in All Forms TB notification rates between the intervention and control areas (p = 0.001), as well as between the employee and volunteer human resource models (p = 0.021). Conclusions: Both salaried and volunteer CHW human resource models demonstrated additionality in case notifications compared to routine case finding by the government TB program. The salaried employee CHW model achieved a greater impact on notifications and should be prioritized for scale-up, given sufficient resources
    corecore