84 research outputs found

    Nac1 interacts with the POZ-domain transcription factor, Miz1

    Get PDF
    Nac1 (nucleus accumbens 1) is a POZ (poxvirus and zinc finger)-domain transcriptional repressor that is expressed at high levels in ovarian serous carcinoma. Here we identify Nac1 as a novel interacting partner of the POZ-domain transcriptional activator, Miz1 (Myc-interacting zinc-finger protein 1), and using chemical crosslinking we show that this association is mediated by a heterodimeric interaction of the Nac1 and Miz1 POZ domains. Nac1 is found in discrete bodies within the nucleus of mammalian cells, and we demonstrate the relocalization of Miz1 to these structures in transfected HeLa cells. We show that siRNA (small interfering RNA)-mediated knockdown of Nac1 in ovarian cancer cells results in increased levels of the Miz1 target gene product, p21Cip1. The interaction of Nac1 with Miz1 may thus be relevant to its mechanism of tumourigenesis in ovarian cancer

    Zinc finger protein ZBTB20 expression is increased in hepatocellular carcinoma and associated with poor prognosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our previous studies showed that ZBTB20, a new BTB/POZ-domain gene, could negatively regulate α feto-protein and other liver-specific genes, concerning such as bio-transformation, glucose metabolism and the regulation of the somatotropic hormonal axis. The aim of this study is to determine the potential clinical implications of ZBTB20 in hepatocellular carcinoma (HCC).</p> <p>Methods</p> <p>Quantitative real-time RT-PCR and Western blot analyses were used to detect expression levels of ZBTB20 in 50 paired HCC tumorous and nontumorous tissues and in 20 normal liver tissues. Moreover, expression of ZBTB20 was assessed by immunohistochemistry of paired tumor and peritumoral liver tissue from 102 patients who had undergone hepatectomy for histologically proven HCC. And its relationship with clinicopathological parameters and prognosis was investigated.</p> <p>Results</p> <p>Both messenger RNA and protein expression levels of ZBTB20 were elevated significantly in HCC tissues compared with the paired non-tumor tissues and normal liver tissues. Overexpressed ZBTB20 protein in HCC was significantly associated with vein invasion (<it>P </it>= 0.016). Importantly, the recurrence or metastasis rates of HCCs with higher ZBTB20 expression were markedly greater than those of HCCs with lower expression (<it>P </it>= 0.003, <it>P </it>= 0.00015, respectively). Univariate and multivariate analyses revealed that ZBTB20 overexpression was an independent prognostic factor for HCC. The disease-free survival period and over-all survival period in patients with overexpressed ZBTB20 in HCC was significantly reduced.</p> <p>Conclusions</p> <p>The expression of ZBTB20 is increased in HCC and associated with poor prognosis in patients with HCC, implicating ZBTB20 as a candidate prognostic marker in HCC.</p

    Curcumin―The Paradigm of a Multi-Target Natural Compound with Applications in Cancer Prevention and Treatment

    Get PDF
    As cancer is a multifactor disease, it may require treatment with compounds able to target multiple intracellular components. We summarize here how curcumin is able to modulate many components of intracellular signaling pathways implicated in inflammation, cell proliferation and invasion and to induce genetic modulations eventually leading to tumor cell death. Clinical applications of this natural compound were initially limited by its low solubility and bioavailability in both plasma and tissues but combination with adjuvant and delivery vehicles was reported to largely improve bio-availability of curcumin. Moreover, curcumin was reported to act in synergism with several natural compounds or synthetic agents commonly used in chemotherapy. Based on this, curcumin could thus be considered as a good candidate for cancer prevention and treatment when used alone or in combination with other conventional treatments

    Molecular changes in the postmortem parkinsonian brain

    Get PDF
    Parkinson disease (PD) is the second most common neurodegenerative disease after Alzheimer disease. Although PD has a relatively narrow clinical phenotype, it has become clear that its etiological basis is broad. Post-mortem brain analysis, despite its limitations, has provided invaluable insights into relevant pathogenic pathways including mitochondrial dysfunction, oxidative stress and protein homeostasis dysregulation. Identification of the genetic causes of PD followed the discovery of these abnormalities, and reinforced the importance of the biochemical defects identified post-mortem. Recent genetic studies have highlighted the mitochondrial and lysosomal areas of cell function as particularly significant in mediating the neurodegeneration of PD. Thus the careful analysis of post-mortem PD brain biochemistry remains a crucial component of research, and one that offers considerable opportunity to pursue etiological factors either by ‘reverse biochemistry’ i.e. from defective pathway to mutant gene, or by the complex interplay between pathways e.g. mitochondrial turnover by lysosomes. In this review we have documented the spectrum of biochemical defects identified in PD post-mortem brain and explored their relevance to metabolic pathways involved in neurodegeneration. We have highlighted the complex interactions between these pathways and the gene mutations causing or increasing risk for PD. These pathways are becoming a focus for the development of disease modifying therapies for PD. Parkinson's is accompanied by multiple changes in the brain that are responsible for the progression of the disease. We describe here the molecular alterations occurring in postmortem brains and classify them as: Neurotransmitters and neurotrophic factors; Lewy bodies and Parkinson's-linked genes; Transition metals, calcium and calcium-binding proteins; Inflammation; Mitochondrial abnormalities and oxidative stress; Abnormal protein removal and degradation; Apoptosis and transduction pathways

    Acne vulgaris: A review of the pathophysiology, treatment, and recent nanotechnology based advances

    No full text
    Background: Globally, Acne Vulgaris is a widespread, chronic inflammatory condition of the pilosebaceous follicles. Acne is not fatal, but depending on its severity, it can leave the sufferer with scars, irritation, and significant psychological effects (including depression). In the current review, we have included various factors for acne and their treatment explained. It also narrated the current medicament and the new investigation dosage forms with clinical phases information provided. Main body of the abstract: Acne's pathophysiology involves four important factors: excessive sebum production, hyperkeratinization of pilosebaceous follicles, hyperproliferation of propionibacterium acnes (P. acnes), and inflammation. Identifying both inflammatory (Papule, pustule, nodule, and cyst) and non-inflammatory (black heads, white heads) acne lesions is necessary for diagnosing and treating acne vulgaris. Short conclusion: In this review, traditional therapy approaches such as topical (i.e., retinoids and antibiotics), systemic (i.e., retinoids, antibiotics, and hormonal), and physical therapies are briefly discussed. In addition, we highlight the issues posed by P. acne's resistance to the antibiotics used in commercially available medications and the necessity for novel therapeutic techniques. Finally, we examined a few innovative acne therapies pending clinical trial approval and commercial acne medications

    Electrochemical detection of 4-nitrophenol on nanostructured CuBi2O4 with plausible mechanism supported by DFT calculations

    No full text
    In this report, copper bismuth oxide (CuBi2O4), a ternary oxide is used for the electrochemical detection of 4-nitrophenol (4-NP). 4-NP is an organic pollutant which is extremely toxic and hazardous to environment. Herein, CuBi2O4 nanorods are prepared hydrothermally followed by electrode fabrication using drop casting method. Structural, morphological studies of CuBi2O4 and electrochemical characterizations pertaining to its performance for electrochemical detection of 4-NP are performed. The electrode has displayed the sensitivity of 56.16 μA μΜ-1 cm-2 with limit of detection (LoD) of 0.61 μM. It displayed high selectivity against several organic and inorganic interferences. The feasibility of CuBi2O4 modified electrode for real water samples is tested and obtained good recovery values. The detailed mechanism involved in the electrochemical detection of 4-NP is proposed and validated with computational studies. Density functional theory (DFT) calculations are performed on the optimized molecules involved in the electrochemical detection of 4-NP confirming CuBi2O4 acting as electron donor while 4-NP as electron acceptor. Further, natural bond orbital (NBO) calculations of 4-NP show a charge of - 0.251 a.u. on -NO2 group and + 0.251 a.u. on the rest of the molecule indicating 4-NP undergoes facile nucleophilic attack. The electrostatic potential (ESP) mapping of 4-NP blue shaded regions justifies its favorable behavior towards nucleophilic attack. Apart from this, UV-Vis spectroscopy is used to study the catalytic reduction of 4-NP using NaBH4. This study reveals that CuBi2O4 is promising material for the electrochemical detection of 4-NP. Also, further modifications of CuBi2O4 can be explored for electrochemical sensing and catalytic performance. © 2022 Elsevier Ltd
    corecore