63 research outputs found

    Breakdown in RF cavities

    Get PDF
    We present a simple model of breakdown in rf cavities. For most events this involves tensile stress and tensile strength, however other effects can also contribute. We discuss the effects of different materials, fatigue, high pressure gas, primary and secondary emission sites, local field enhancements, dark currents, secondary emission, work functions, magnetic fields, macro and microscopic fracture mechanisms high current densities, surface and subsurface defects, and astronomical power densities. While primarily devoted to normal conductors, this work also has consequences for superconducting rf surfaces

    Genome-wide association and meta-analysis in populations from Starr County, Texas, and Mexico City identify type 2 diabetes susceptibility loci and enrichment for expression quantitative trait loci in top signals

    Get PDF
    AIMS/HYPOTHESIS: We conducted genome-wide association studies (GWASs) and expression quantitative trait loci (eQTL) analyses to identify and characterise risk loci for type 2 diabetes in Mexican-Americans from Starr County, TX, USA. METHOD: Using 1.8 million directly interrogated and imputed genotypes in 837 unrelated type 2 diabetes cases and 436 normoglycaemic controls, we conducted Armitage trend tests. To improve power in this population with high disease rates, we also performed ordinal regression including an intermediate class with impaired fasting glucose and/or glucose tolerance. These analyses were followed by meta-analysis with a study of 967 type 2 diabetes cases and 343 normoglycaemic controls from Mexico City, Mexico. RESULT: The top signals (unadjusted p value <1×10(−5)) included 49 single nucleotide polymorphisms (SNPs) in eight gene regions (PER3, PARD3B, EPHA4, TOMM7, PTPRD, HNT [also known as RREB1], LOC729993 and IL34) and six intergenic regions. Among these was a missense polymorphism (rs10462020; Gly639Val) in the clock gene PER3, a system recently implicated in diabetes. We also report a second signal (minimum p value 1.52× 10(−6)) within PTPRD, independent of the previously implicated SNP, in a population of Han Chinese. Top meta-analysis signals included known regions HNF1A and KCNQ1. Annotation of top association signals in both studies revealed a marked excess of trans-acting eQTL in both adipose and muscle tissues. CONCLUSIONS/INTERPRETATION: In the largest study of type 2 diabetes in Mexican populations to date, we identified modest associations of novel and previously reported SNPs. In addition, in our top signals we report significant excess of SNPs that predict transcript levels in muscle and adipose tissues

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders
    corecore