112 research outputs found

    Molecular mechanisms of diabetic renal hypertrophy

    Get PDF
    Molecular mechanisms of diabetic renal hypertrophy. Altered growth of renal cells is one of the early abnormalities detected after the onset of diabetes. Cell culture studies whereby renal cells are exposed to high glucose concentrations have provided a considerable amount of insight into mechanisms of growth. In the glomerular compartment, there is a very early and self-limited proliferation of mesangial cells with subsequent hypertrophy, whereas proximal tubular cells primarily undergo hypertrophy. There is overwhelming evidence from in vivo and cell culture studies that induction of the transforming growth factor-βbgr; (TGF-βbgr;) system mediates the actions of high ambient glucose and that this system is pivotal for the hypertrophy of mesangial and tubular cells. Other factors such as hemodynamic forces, protein glycation products, and several mediators (for example, angiotensin II, endothelin-1, thromboxane, and platelet-derived growth factor) may further amplify the synthesis of TGF-βbgr; and/or the expression of its receptors in the diabetic state. Cellular hypertrophy can be characterized by cell cycle arrest in the G1 phase. The molecular mechanism arresting mesangial cells in the G1 phase of the cell cycle is the induction of cyclin-dependent kinase (CdK) inhibitors such as p27Kip1 and p21, which bind to and inactivate cyclin-CdK complexes responsible for G1-phase exit. High-glucose–induced activation of protein kinase C and stimulated TGF-βbgr; expression appear to be essential for stimulated expression of p27Kip1. In addition, a decreased turnover of protein caused by the inhibition of proteases contributes to hypertrophy. The development of irreversible renal changes in diabetes mellitus such as glomerulosclerosis and tubulointerstitial fibrosis is always preceded by the early hypertrophic processes in the glomerular and the tubular compartments. It may still be debated whether diabetic renal hypertrophy will inevitably lead to irreversible fibrotic changes in the absence of other factors such as altered intraglomerular hemodynamics and genetic predisposition. Nevertheless, understanding cellular growth on a molecular level may help design a novel therapeutic approach to prevent or treat diabetic nephropathy effectively

    Morphological changes in diabetic kidney are associated with increased O-GlcNAcylation of cytoskeletal proteins including α-actinin 4

    Get PDF
    Abstract Purpose The objective of the present study is to identify proteins that change in the extent of the modification with O-linked N-acetylglucosamine (O-GlcNAcylation) in the kidney from diabetic model Goto-Kakizaki (GK) rats, and to discuss the relation between O-GlcNAcylation and the pathological condition in diabetes. Methods O-GlcNAcylated proteins were identified by two-dimensional gel electrophoresis, immunoblotting and peptide mass fingerprinting. The level of O-GlcNAcylation of these proteins was examined by immunoprecipitation, immunoblotting and in situ Proximity Ligation Assay (PLA). Results O-GlcNAcylated proteins that changed significantly in the degree of O-GlcNAcylation were identified as cytoskeletal proteins (α-actin, α-tubulin, α-actinin 4, myosin) and mitochondrial proteins (ATP synthase β, pyruvate carboxylase). The extent of O-GlcNAcylation of the above proteins increased in the diabetic kidney. Immunofluorescence and in situ PLA studies revealed that the levels of O-GlcNAcylation of actin, α-actinin 4 and myosin were significantly increased in the glomerulus and the proximal tubule of the diabetic kidney. Immunoelectron microscopy revealed that immunolabeling of α-actinin 4 is disturbed and increased in the foot process of podocytes of glomerulus and in the microvilli of proximal tubules. Conclusion These results suggest that changes in the O-GlcNAcylation of cytoskeletal proteins are closely associated with the morphological changes in the podocyte foot processes in the glomerulus and in microvilli of proximal tubules in the diabetic kidney. This is the first report to show that α-actinin 4 is O-GlcNAcylated. α-Actinin 4 will be a good marker protein to examine the relation between O-GlcNAcylation and diabetic nephropathy.</p

    Nutritional supplementation for type 2 diabetes: a systematic review

    Get PDF
    The role of nutritional supplementation is of increasing interest with regard to ocular disease. Randomised controlled trials have demonstrated the effectiveness of supplementation for age-related macular degeneration, and formulations are now being developed for use by people with diabetes and diabetic retinopathy. The aim of this review was to synthesise the evidence for use of nutritional supplementation in type 2 diabetes. MEDLINE and EMBASE databases were searched using a systematic approach. Only double-masked randomised controlled trials were selected. A total of 50 trials were identified as suitable for inclusion. The potential role of alpha-lipoic acid, chromium, folic acid, isoflavones, magnesium, Pycnogenol®, selenium, vitamin C, vitamin E, and zinc in the treatment of type 2 diabetes is discussed. The review of trials identifies positive effects of these nutrients on various outcome measures relating to insulin resistance and cardiovascular factors. Chromium was the most studied supplement, accounting for 16 of the 50 trials. A majority of the trials found a positive effect of chromium on fasting plasma glucose. Isoflavones were found to have a positive effect on insulin resistance and cardiovascular outcome measures, but only when combined with soy proteins. Vitamin E is reported to reduce oxidative stress at levels of 200 mg day-1 or more

    Expression of Glutamine:Fructose-6-Phosphate Amidotransferase in Human Tissues: Evidence for High Variability and Distinct Regulation in Diabetes

    Full text link
    Recent in vitro and in vivo studies suggested that the increased flux of glucose through the hexosamine biosynthetic pathway may contribute to glucoseinduced insulin resistance and to the induction of the synthesis of growth factors. Because glutamine:fructose-6-phosphate amidotransferase (GFAT) catalyzes the first and rate-limiting step in the formation of hexosamine products, this enzyme is the key regulator in this pathway and is therefore possibly also involved in the alterations occurring in preclinical or manifest diabetic patients. To study the expression of GFAT in human tissues, we produced and characterized a peptic antiserum specifically recognizing GFAT protein and a riboprobe for the detection of GFAT mRNA. Immunohistochemical and nonradioactive in situ hybridization analysis revealed high levels of expression of GFAT protein and mRNA in adipocytes and skeletal muscle. Furthermore, a marked GFAT expression was found in vascular smooth muscle cells with unexpectedly high variability and lower levels in other cells, e.g., peripheral nerve sheath cells or endocrine-active cells, including the pancreatic islet cell. GFAT protein expression was below detection level in endothelium, osteocytes, lymphocytes, granulocytes, and in most quiescent fibroblasts. In renal tissue, GFAT was expressed in tubular epithelial cells, while glomerular cells remained essentially unstained. Renal sections obtained from patients with diabetic nephropathy showed significant GFAT expression in some glomerular epithelial and mesangial cells, indicating that GFAT expression may be induced by manifest diabetes. Our data indicate that GFAT is expressed in most tissues involved in the development of diabetic late complications. Furthermore, the results suggest that GFAT gene expression is highly regulated</jats:p

    Human monoclonal antibodies isolated from type I diabetes patients define multiple epitopes in the protein tyrosine phosphatase-like IA-2 antigen

    No full text
    Protein tyrosine phosphatase-like IA-2 autoantigen is one of the major targets of humoral autoimmunity in patients with insulin-dependant diabetes mellitus (IDDM). In an effort to define the epitopes recognized by autoantibodies against IA-2, we generated five human mAbs (hAbs) from peripheral B lymphocytes isolated from patients most of whom had been recently diagnosed for IDDM. Determination and fine mapping of the critical regions for autoantibody binding was performed by RIA using mutant and chimeric constructs of IA-2- and IA-2 beta-regions, Four of the five IgG autoantibodies recognized distinct epitopes within the protein tyrosine phosphatase (PTP)-like domain of IA-2, The minimal region required for binding by three of the PTP-like domain-specific hAbs could be located to aa 777-979, Two of these hAbs cross-reacted with the related IA-2 beta PTP-like domain (1A-2 beta aa 741-1033), A further PTP-like domain specific hAb required the entire PTP-like domain (aa 687-979) for binding, but critical amino acids clustered in the N-terminal region 687-777, An additional epitope could be localized within the juxtamembrane domain (aa 603-779), In competition experiments, the epitope recognized by one of the hAbs was shown to be targeted by 10 of 14 anti-IA-2-positive sera. Nucleotide sequence analysis of this hAb revealed that it used a V-H germline gene (DP-71) preferably expressed in autoantibodies associated with IDDM. The presence of somatic mutations in both heavy and light chain genes and the high affinity or this Ab suggest that the immune response to IA-2 is Ag driven
    corecore