12 research outputs found

    Biomarkers of Nutrition for Development (BOND)—Iron Review

    Get PDF
    This is the fifth in the series of reviews developed as part of the Biomarkers of Nutrition for Development (BOND) program. The BOND Iron Expert Panel (I-EP) reviewed the extant knowledge regarding iron biology, public health implications, and the relative usefulness of currently available biomarkers of iron status from deficiency to overload. Approaches to assessing intake, including bioavailability, are also covered. The report also covers technical and laboratory considerations for the use of available biomarkers of iron status, and concludes with a description of research priorities along with a brief discussion of new biomarkers with potential for use across the spectrum of activities related to the study of iron in human health. The I-EP concluded that current iron biomarkers are reliable for accurately assessing many aspects of iron nutrition. However, a clear distinction is made between the relative strengths of biomarkers to assess hematological consequences of iron deficiency versus other putative functional outcomes, particularly the relationship between maternal and fetal iron status during pregnancy, birth outcomes, and infant cognitive, motor and emotional development. The I-EP also highlighted the importance of considering the confounding effects of inflammation and infection on the interpretation of iron biomarker results, as well as the impact of life stage. Finally, alternative approaches to the evaluation of the risk for nutritional iron overload at the population level are presented, because the currently designated upper limits for the biomarker generally employed (serum ferritin) may not differentiate between true iron overload and the effects of subclinical inflammation

    The cost-effectiveness of procalcitonin for guiding antibiotic prescribing in individuals hospitalized with COVID-19: part of the PEACH study

    Get PDF
    Background Many hospitals introduced procalcitonin (PCT) testing to help diagnose bacterial coinfection in individuals with COVID-19, and guide antibiotic decision-making during the COVID-19 pandemic in the UK. Objectives Evaluating cost-effectiveness of using PCT to guide antibiotic decisions in individuals hospitalized with COVID-19, as part of a wider research programme. Methods Retrospective individual-level data on patients hospitalized with COVID-19 were collected from 11 NHS acute hospital Trusts and Health Boards from England and Wales, which varied in their use of baseline PCT testing during the first COVID-19 pandemic wave. A matched analysis (part of a wider analysis reported elsewhere) created groups of patients whose PCT was/was not tested at baseline. A model was created with combined decision tree/Markov phases, parameterized with quality-of-life/unit cost estimates from the literature, and used to estimate costs and quality-adjusted life years (QALYs). Cost-effectiveness was judged at a £20 000/QALY threshold. Uncertainty was characterized using bootstrapping. Results People who had baseline PCT testing had shorter general ward/ICU stays and spent less time on antibiotics, though with overlap between the groups’ 95% CIs. Those with baseline PCT testing accrued more QALYs (8.76 versus 8.62) and lower costs (£9830 versus £10 700). The point estimate was baseline PCT testing being dominant over no baseline testing, though with uncertainty: the probability of cost-effectiveness was 0.579 with a 1 year horizon and 0.872 with a lifetime horizon. Conclusions Using PCT to guide antibiotic therapy in individuals hospitalized with COVID-19 is more likely to be cost-effective than not, albeit with uncertainty

    Regional distribution of diagenetic carbonate cement in Palaeocene deepwater sandstones: North Sea

    No full text
    Sandstones of the Palaeocene Montrose Group were deposited in a deepwater fan environment, and form a major oil reservoir in the North Sea. Calcite concretions occur commonly within thick- bedded and structureless sandstones. These concretions have been identified by sonic logs and well reports, and were cross- checked with available core data. Regionally, 101 wells have been examined and carbonate concretions form 0.6-7.2% of the core. Concretions are most abundant along the flank of the Fladen Ground Spur, the north Witch Ground Graben (WGG), the east south Viking Graben and East Central Graben (ECG). Concretions of the ECG formed at deep burial, with C from decarboxylation. Geochemical inheritance of Mn and Sr from Cretaceous chalk clasts may occur. Concretion growth may also have been influenced by vertical expulsion of fluids (leak-off) localized above salt tectonics. Isotopic and petrographic evidence indicates that much carbonate C in the WGG was derived from biodegradation of migrating oil in meteoric water at shallow depth. The locations of abundant carbonate with characteristic negative C isotope signatures can be used as shallow exploration guides to leak-off points located above deep overpressured structures
    corecore