7 research outputs found

    Mutant profilin1 transgenic mice recapitulate cardinal features of motor neuron disease

    Get PDF
    The recent identiļ¬cation of proļ¬lin1 mutations in 25 familial ALS cases has linked altered function of this cytoskeletonregulating protein to the pathogenesis of motor neuron disease. To investigate the pathological role of mutant proļ¬lin1 in motor neuron disease, we generated transgenic lines of mice expressing human proļ¬lin1 with a mutation at position 118 (hPFN1G118V). One of the mouse lines expressing high levels of mutant human PFN1 protein in the brain and spinal cord exhibited many key clinical and pathological features consistent with human ALS disease. These include loss of lower (ventral horn) and upper motor neurons (corticospinal motor neurons in layer V), mutant proļ¬lin1 aggregation, abnormally ubiquitinated proteins, reduced choline acetyltransferase (ChAT) enzyme expression, fragmented mitochondria, glial cell activation, muscle atrophy, weight loss, and reduced survival. Our investigations of actin dynamics and axonal integrity suggest that mutant PFN1 protein is associated with an abnormally low ļ¬lamentous/globular (F/G)-actin ratio that may be the underlying cause of severe damage to ventral root axons resulting in a Wallerian-like degeneration. These observations indicate that our novel proļ¬lin1 mutant mouse line may provide a new ALS model with the opportunity to gain unique perspectives into mechanisms of neurodegeneration that contribute to ALS pathogenesis

    Absence of UCHL 1 function leads to selective motor neuropathy.

    No full text
    OBJECTIVE: The aim of this study was to investigate the role of ubiquitin C-terminal hydrolase-L1 (UCHL1) for motor neuron circuitry and especially in spinal motor neuron (SMN) health, function, and connectivity. METHODS: Since mutations in UCHL1 gene leads to motor dysfunction in patients, we investigated the role of UCHL1 on SMN survival, axon health, and connectivity with the muscle, by employing molecular and cellular marker expression analysis and electrophysiological recordings, in healthy wild-type and Uchl1 (nm3419) (UCHL1-/-) mice, which lack all UCHL1 function. RESULTS: There is pure motor neuropathy with selective degeneration of the motor, but not sensory axons in the absence of UCHL1 function. Neuromuscular junctions (NMJ) are impaired in muscle groups that are innervated by slow-twitch or fast-twitch SMN. However, unlike corticospinal motor neurons, SMN cell bodies remain intact with no signs of elevated endoplasmic reticulum (ER) stress. INTERPRETATION: Presence of NMJ defects and progressive retrograde axonal degeneration in the absence of major SMN soma loss suggest that defining pathology as a function of neuron number is misleading and that upper and lower motor neurons utilize UCHL1 function in different cellular events. In line with findings in patients with mutations in UCHL1 gene, our results suggest a unique role of UCHL1, especially for motor neuron circuitry. SMN require UCHL1 to maintain NMJ and motor axon health, and that observed motor dysfunction in the absence of UCHL1 is not due to SMN loss, but mostly due to disintegrated circuitry. Ann Clin Transl Neurol 2016 Mar 7; 3(5):331-45

    The C-terminal unique region of desmoglein 2 inhibits its internalization via tailā€“tail interactions

    No full text
    Desmosomal cadherins, desmogleins (Dsgs) and desmocollins, make up the adhesive core of intercellular junctions called desmosomes. A critical determinant of epithelial adhesive strength is the level and organization of desmosomal cadherins on the cell surface. The Dsg subclass of desmosomal cadherins contains a C-terminal unique region (Dsg unique region [DUR]) with unknown function. In this paper, we show that the DUR of Dsg2 stabilized Dsg2 at the cell surface by inhibiting its internalization and promoted strong intercellular adhesion. DUR also facilitated Dsg tailā€“tail interactions. Forced dimerization of a Dsg2 tail lacking the DUR led to decreased internalization, supporting the conclusion that these two functions of the DUR are mechanistically linked. We also show that a Dsg2 mutant, V977fsX1006, identified in arrhythmogenic right ventricular cardiomyopathy patients, led to a loss of Dsg2 tail self-association and underwent rapid endocytosis in cardiac muscle cells. Our observations illustrate a new mechanism desmosomal cadherins use to control their surface levels, a key factor in determining their adhesion and signaling roles

    EGFR and ADAMs Cooperate to Regulate Shedding and Endocytic Trafficking of the Desmosomal Cadherin Desmoglein 2

    No full text
    Regulation of classic cadherins plays a critical role in tissue remodeling during development and cancer; however, less attention has been paid to the importance of desmosomal cadherins. We previously showed that EGFR inhibition results in accumulation of the desmosomal cadherin, desmoglein 2 (Dsg2), at cellā€“cell interfaces accompanied by inhibition of matrix metalloprotease (MMP)-dependent shedding of the Dsg2 ectodomain and tyrosine phosphorylation of its cytoplasmic domain. Here, we show that EGFR inhibition stabilizes Dsg2 at intercellular junctions by interfering with its accumulation in an internalized cytoplasmic pool. Furthermore, MMP inhibition and ADAM17 RNAi, blocked shedding and depleted internalized Dsg2, but less so E-cadherin, in highly invasive SCC68 cells. ADAM9 and 15 silencing also impaired Dsg2 processing, supporting the idea that this desmosomal cadherin can be regulated by multiple ADAM family members. In contrast, ADAM10 siRNA enhanced accumulation of a 100-kDa Dsg2 cleavage product and internalized pool of Dsg2. Although both MMP and EGFR inhibition increased intercellular adhesive strength in control cells, the response to MMP-inhibition was Dsg2-dependent. These data support a role for endocytic trafficking in regulating desmosomal cadherin turnover and function and raise the possibility that internalization and regulation of desmosomal and classic cadherin function can be uncoupled mechanistically
    corecore