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Abstract
The recent identification of profilin1 mutations in 25 familial ALS cases has linked altered function of this cytoskeleton-
regulating protein to the pathogenesis of motor neuron disease. To investigate the pathological role of mutant profilin1 in
motor neuron disease, we generated transgenic lines of mice expressing human profilin1 with a mutation at position 118
(hPFN1G118V). One of the mouse lines expressing high levels of mutant human PFN1 protein in the brain and spinal cord ex-
hibited many key clinical and pathological features consistent with human ALS disease. These include loss of lower (ventral
horn) and upper motor neurons (corticospinal motor neurons in layer V), mutant profilin1 aggregation, abnormally ubiquiti-
nated proteins, reduced choline acetyltransferase (ChAT) enzyme expression, fragmented mitochondria, glial cell activation,
muscle atrophy, weight loss, and reduced survival. Our investigations of actin dynamics and axonal integrity suggest that
mutant PFN1 protein is associated with an abnormally low filamentous/globular (F/G)-actin ratio that may be the underlying
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cause of severe damage to ventral root axons resulting in a Wallerian-like degeneration. These observations indicate that our
novel profilin1 mutant mouse line may provide a new ALS model with the opportunity to gain unique perspectives into
mechanisms of neurodegeneration that contribute to ALS pathogenesis.

Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative
disease characterized by the loss of upper and lower motor neu-
rons. Affected individuals develop progressive muscle weakness
and atrophy, eventually leading to death due to respiratory failure
(1,2). Clinical studies and extensive basic research have provided
initial insight into the pathogenic mechanisms of selective motor
neuron degeneration. Nevertheless, the aetiology of sporadic ALS
(sALS) remains largely unknown. Cases of familial ALS (fALS) ac-
count for �20% of ALS patients, and in approximately half of the
affected families, fALS has been linked to a growing collection of
gene mutations (e.g., SOD1, TARDBP, FUS/TLS, OPTN, UBQLN2, VCP,
hnRNPA2B1, hnRNPA1, TBK1, TUBA4A and C9ORF72) (3–10). The
identification of these mutant genes establishes new rationale for
exploring specific pathogenic processes and mechanisms as the
basis of motor neuron death in ALS. Some of the genes linked to
fALS have been used to generate mouse models to mimic ALS,
and the most popular mouse models for ALS are the SOD1-based
mouse models (11–14). Other mouse and rat models generated are
TARDBP, FUS, and C9ORF72 (15–19). SOD1 mutant mice are the
most consistent model of ALS to date and have been highly infor-
mative in increasing our understanding of the role of mutant pro-
teins in ALS and instrumental in therapeutic development.
Therefore, additional mouse models of ALS that are equally con-
sistent or better are desperately needed to gain further insights
into the disease and discover novel pathways that could be tar-
geted for therapeutic development to cure the disease, or at least
slow its progression. We have developed such a model, which is
described in this manuscript.

Recent identification of mutations in the profilin1 (PFN1) gene
in 25 human fALS patients focused attention on cytoskeletal dys-
function as a neurodegenerative factor in ALS. To date, eight dif-
ferent mutations (A20T, C71G, G118V, M114T, E117G, T109M,
R136W, Q139L) in the profilin1 protein have been reported in the
affected families (20–23). Profilin1 is ubiquitously expressed during
all embryonic stages and in nearly all adult cell types and tissues
(24). The most recognized function of profilin1 is its ability to regu-
late the assembly of filamentous actin (F-actin), implicating its in-
volvement in cytoskeletal regulation, cell division, differentiation,
migration, and maintenance (25–28). Profilin1 interacts with more
than 50 ligands and binding partners involved in multiple cellular
processes ranging from gene transcription, growth cone forma-
tion, axonal development and maintenance, to membrane traf-
ficking. profilin1 regulates PI(3,4)P(2) (phosphatidylinositols) in
MDA-MB-231 cells, and profilin1’s interaction with lipid products
of PI3 kinase suggests that the plasma membrane may be a site of
its action because accumulating evidence links profilin1 to signal
transduction via G-proteins (29–32). The actin-binding and actin-
independent functions of profilin1, as described above, argue for
its importance in the maintenance of neuronal integrity by modu-
lating cytoskeletal dynamics, axonal health, mitochondrial trans-
port, and other cellular functions.

To shed light into possible abnormalities of profilin1 structure
and/or function, which is caused by the G118V mutation associ-
ated with fALS, we used X-ray crystallography data from bovine
profilin1 to construct a structural model for human profilin1.
Using the PyMOL computer software program and molecular

visualization system, we were able to depict the location of mu-
tant amino acid residues relative to the actin-binding site
(Supplementary Material, Fig. S1A). Given the proximity of the
G118V to the actin-binding site and considering the side-chain
size difference incurred by substitution of valine for glycine, it is
possible that this mutation profoundly impacts profilin1’s interac-
tion with G-actin or renders it ineffective in catalyzing the ex-
change of actin-ADP for actin-ATP (33). A notable effect of the
G118V mutation, considering the small side chain of glycine (-H)
and large side chain of valine (-CH-(CH3)2), may result in the dis-
ruption of the secondary structure of profilin1, resulting in unsta-
ble protein folding and attenuation of profilin1 interaction with G-
actin, its ligands, and other binding partners. It became clear that
to understand how changes in the profilin1 protein e.g. glycine to
valine residue substitution with a large side-chain difference,
other recent human C71G and M114T mutations, and new find-
ings form crystallographic studies (34) it would be necessary to
create an animal model expressing mutated profilin1. This would
allow us to begin to dissect out the mechanisms by which this
mutation causes neurodegeneration in vivo and contributes to the
pathogenesis of fALS. Accordingly, we generated transgenic
mouse lines overexpressing hPFN1G118V and hPFN1WT to investi-
gate the molecular and pathogenic mechanisms of mutant profi-
lin1 toxicity towards understanding the fundamental processes by
which profilin1 influences motor neuron function, and to enable
discovery of novel, promising therapeutic strategies. The novel
mouse model that we have generated exhibits ALS-like patho-
genic and behavioural phenotypes, and this is proof of principle
that profilin1 mutation cause ALS. Additionally our study provides
new information to advance our understanding of mechanisms of
mutant profilin1 toxicity. Our new hPFN1G118V mouse offers the
opportunity to define specific roles of profilin1 in protein aggrega-
tions, neuronal dysfunction, axonal degeneration, actin dynamics,
and it allows us to establish the importance of the equilibrium of
(G)-actin and (F)-actin that is essential for cell division, adhesion,
and motility as well as cytoskeletal remodeling, neuronal develop-
ment, pathfinding, and synaptic plasticity.

Results
Generation of profilin1 transgenic mice

To assess the effects of mutant profilin1 on motor neuron degen-
eration in vivo, we generated transgenic mice overexpressing
untagged mutant human profilin1 (hPFN1G118V) and wild type
(WT) human profilin1 (hPFN1WT) using a single transgene vector
construct. This vector construct contained hPFN1G118V cDNA
placed in front of the mouse prion promoter (PrP), which has been
previously used for generating transgenic mouse models of
neurodegeneration, to drive the transgene expression in the cen-
tral nervous system (Supplementary Material, Fig. S1A) (15,35,36).
Human and mouse profilin1 amino acid (AA) sequences differ by
six big residues with significant difference in the side chains
(Supplementary Material, Fig. S1B). These residues and G118V ac-
counted for slight differences in gel mobility and partial separa-
tion of human and mouse profilin1 bands. A Western blot
comparison of profilin1 protein (endogenous mouse and untagged
human PFN1) between the spinal cord tissues of highly expressing
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hPFN1G118V mice, hPFN1WT mice, and non-transgenic (non-TG)
mice revealed that PFN1 protein levels at 5.25 6 0.53 (PFN1G118V)
and 4.06 6 0.44 (PFN1WT), and 1.00 6 0.24 (non-TG) fold relative to
the non-TG mouse PFN1 (Fig. 1). Human PFN1 expression under
the control of a prion promoter was expressed in the brain, spinal
cord, and to a lesser degree in skeletal muscle, while the liver did
not express the transgene (Supplementary Material, Fig. S2A). The
temporal expression of PFN1 was examined in the spinal cords of
mice form P50, P111, P136 and P209 by western blotting. The ex-
pression levels of profilin1 in non-TG and hPFN1G118V mice levels
didn’t change (Supplementary Material, Fig. S2B).

Highly expressing hPFN1G118V transgenic mice exhibited
motor-related phenotypes that progressively deteriorated with
time. These mice were regularly monitored from birth for signs
of motor dysfunction and ALS symptoms (please see Material
and Methods section for a detailed description of behavioural
assays). There was no obvious difference in the time of disease
onset between males and females. Different to other mice,
hPFN1G118V mice displayed signs of disease from postnatal day
(P) P120 through P130 and rapidly progressed to end-stage dis-
ease (see Material and Methods). These symptoms began in the
hind limbs, noticed as asymmetrical hind limb display and re-
flex, fine tremor, and appearance of angle in hind limb at the
ankle joint where gastrocnemius and tibialis muscle tendons
are attached. These initial subtle signs led to gradual hind limb
clasping, further tremor development, and hind limb skeletal
muscle weakness. Next, mice developed gait abnormalities and
a duck-like walking pattern, spasticity, and an inability to ele-
vate the tail. These symptoms were followed by weight loss and
attenuation of muscle strength, as determined by a motor per-
formance test. In the final disease stages, hPFN1G118V mice drag
their hind limbs, develop kyphosis, and finally became non-

ambulatory and moribund (Fig. 2). The phenotype and patholog-
ical characteristics of these mice are described below. The
hPFN1WT mice were followed until P300 and did not reveal any
significant differences in gross anatomy, life span, weight,
rotarod performance, and stride length, as compared to non-TG
animals (Fig. 2), indicating that overexpression of hPFN1WT in
mice does not cause any obvious ALS-like phenotype.

Effect of mutant profilin1 on gross morphology and
survival

Since voluntary muscle paralysis is a hallmark of human ALS, we
sought to determine if the expression of mutant profilin1 is suffi-
cient to cause skeletal muscle atrophy and pathology with a possi-
ble impact on motor behaviour. hPFN1G118V transgenic mice
exhibited progressively deteriorating motor dysfunction with the
onset of symptoms at P120–130 and rapid progression to end-stage
disease (P165–210). The symptoms began in the hind limbs as an
asymmetrical hind limb reflex, a fine tremor, and the appearance of
an angle in the hind limb at the ankle joint, where the gastrocne-
mius and tibialis muscle tendons are attached (Fig. 3). These initial
subtle signs were followed by a gradual decline in locomotion and,
at the fully symptomatic stage (P160); the average stride length was
reduced to 3.31 6 1.1 cm (Fig. 2C). In contrast, transgenic hPFN1WT

and non-TG mice had comparable stride lengths (6.0 6 0.5 cm and
6.6 6 0.9 cm, respectively) that were maintained during locomotion
monitoring from P60 up to P300 (Fig. 2C). The stride length in
PFN1G118V mice reached 0.00 cm (data not shown) in the final dis-
ease stages. These mice developed kyphosis and dragged their hind
legs with the help of front limb mobility until the end stage of dis-
ease (S.4 and S.5, movies of one hPFN1G118V mouse at the fully
symptomatic stage and near the end stage of disease). Ultimately,
PFN1G118V mice became non-ambulatory and moribund. Animals in
the end stages of disease were considered moribund when they
could not right themselves within 20 s and sacrificed humanely.
The age when sacrificed was counted as the age of death. The
weight loss in hPFN1G118V mice started at�P150, as shown in Figure
2A. The body weight of hPFN1G118V mice at P203 was reduced to 21.
4 6 6.1 g (hPFN1G118V, n¼ 15) from the initial peak weight of �30 g,
while the weight of non-TG and hPFN1WT mice was higher (non-TG,
35.8 6 9.1 g, n¼ 10; hPFN1WT 33.2 6 5.4 g, n¼ 10). This weight loss in
hPFN1G118V mice was also evident in a marked reduction in hind
limb gastrocnemius and tibialis muscle sizes (Fig. 3A and B).

The ability of hPFN1G118V mice to stay on a rotating rod was im-
paired, as compared to control animals (Fig. 2B). Starting at P140,
hPFN1G118V mice demonstrated significantly shorter latency on
rotarod that gradually deteriorated and eventually reached zero la-
tency before falling (Fig. 2B). The average age of death for both
males and females combined was 202 6 30 days. The hPFN1G118V

females reached the end stage of disease at P191 6 30 (n¼ 26; range
P139 to P271) and males reached the end stage of disease at
P213 6 29 (n¼ 43; range P153 to P283) (Fig. 2D). The Kaplan-Meier
analysis of survival data suggested a significant difference in life-
span between hPFN1G118V male and female mice using the logrank
(Mantel-Cox) test (Chi-Squareþ7.102; P value¼ 0.0077).

Pathologies of mutant profilin1 mice

Mutant profilin1 causes reduced hind limb CMAP amplitude
To address the decline in motor performance, we assessed the
effect of mutated human profilin1 on motor units by measuring
compound muscle action potential (CMAP) from the tibialis an-
terior muscle in the hind limbs of disease end-stage hPFN1G118V

mice and non-TG littermates (Fig. 4A).

Figure 1. Human and mouse Profilin 1 expression levels. (A) Western blot analy-

sis of mouse profilin 1 (PFN1) and untagged human PFN1 levels probed with

anti-PFN1 antibody in 30 lg samples of total spinal cord homogenates from non-

transgenic (non-TG), transgenic hPFN1WT, and transgenic hPFN1G118V lines.

hPFN1G118V/WT and mPFN1 migrated closer together and were seen as a doublet.

Human PFN1 migrated behind mouse PFN1, as shown by arrows, which was due

to 6 different amino acid residues. (B) Quantification of the band relative density

(single bands in non-TG mice and double bands in transgenic mice) were nor-

malized to GAPDH and presented as mean 6 SEM. Asterisks denote significantly

different PFN1 protein levels in transgenic lines versus non-TG, t-test, with

Bonfroni post hoc, ***P�0.01, ****P<0.0001. n¼3 for each group of mice.
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The CMAP amplitudes were drastically reduced in hPFN1G118V

mice, as compared to age-matched non-TG controls (non-TG,
81.3 6 2.1 mV versus hPFN1G118V mice, 24.0 6 5.5 mV) (Fig. 4B), sug-
gesting muscle function deficits that can be in part due to a reduc-
tion of innervating fibres and/or severe muscle atrophy. In
addition, we observed a prolonged CMAP duration in hPFN1G118V

versus controls (non-TG, 2.9 6 0.2 ms versus hPFN1G118V mice,
3.4 6 0.2 ms), which are signs of myopathy associated with critical
illness (37) (Supplementary Material, Fig. S3.)

Mutant profilin1 causes neuromuscular junction and muscle
denervation
Following the observation of abnormal CMAP recordings, we
investigated neuromuscular junction (NMJ) loss and muscle de-
nervation using b-tubulin, synaptophysin (presynaptic neuronal

markers), and a-bungarotoxin (post-synaptic acetylcholine recep-
tor marker). These pre- and postsynaptic markers allowed us to
quantify the percentage of innervated, partially innervated, and
denervated gastrocnemius NMJs at presymptomatic (P100), fully
symptomatic (P165) and end stages of the disease (P202). The pres-
ence of both pre- and postsynaptic markers staining was consid-
ered an innervated muscle fibre. The partial presence of both pre-
and postsynaptic markers was considered an intermediate level
of innervation. The absence of co-localization of any presynaptic
markers with a-bungarotoxin was considered a denervation. A
higher percentage of denervated gastrocnemius muscles was
identified in hPFN1G118V mice, as compared to non-TG littermates
(Fig. 5). Intermediate denervation in non–TG animals was assessed
at �30%, whereas gastrocnemius muscle sections of hPFNG118V

mice displayed significantly higher intermediate innervation,

Figure 2. Weight loss, motor performance and survival of hPFN1G118V mice compared to hPFN1WT and non-TG mice. (A) Body weights presented from P100 to P260. The

weight of hPFN1G118V mice began to drop from PD 150, n¼ 12-15. A repeated measure ANOVA followed by a Student-Newman-Keuls test, *P<0.05. (B) Rotarod perfor-

mance, n¼15/group, *P<0.05. (C) Stride length measured in centimeters (cm) at P160 shows significant stride shortening in hPFN1G118V mice (n¼10), repeated measure

of ANOVA followed by Student-Newman-Keuls test ****P<0.0001. (D) Kaplan-Meier survival plot of male and female hPFN1G118V mice compared to hPFN1WT (n¼15),

M¼Males (n¼43), F¼Females (n¼26). For A–C, data are presented as mean 6 SEM. Asterisks in A, B, and C denote significant difference in weight, latency in rotarod,

and stride length between hPFN1G118V mice and non-TG or hPFN1WT mice. Female mice survival is significantly shorter than males, as assessed with Kaplan-Meier

analysis of survival with logrank (Mantel-Cox) test.

Figure 3. Abnormal phenotype of mutant hPFN1G118V mice. Representative images of (A) physical appearance of mutant hPFN1G118V mice from early-symptomatic

(P145), fully symptomatic (P165) to endstage disease (average of P202). (B) Hind limb paralysis in hPFN1G118V (left), normal reflex in non-TG littermates (right) at P165;

skeletal muscle atrophy was observed in the hind limbs of hPFN1G118V mice (bottom left) compared to non-TG littermates (bottom right) at P165.
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culminating in �55% at end-stage disease (Fig. 5B). Similarly, al-
though denervated muscle fibres were rare in non-TG littermates,
this finding increased progressively after symptom onset in
hPFNG118V mice, ultimately reaching �40% of muscle fibres at the
end stage of disease (Fig. 5B). We also examined axons in the sci-
atic nerves using Toluidine blue staining of semi-thin sections of
the sciatic nerve from end-stage hPFN1G118V transgenic and non-
TG mice. We found degenerating myelinated axons and glia

containing phagocytized myelin in the sciatic nerves of end-stage
hPFN1G118V transgenic mice (Fig. 5C). These results suggest that
over-expression of mutant hPFN1G118V causes NMJ loss and skele-
tal muscle fibre denervation, a finding that correlates with disease
pathology in ALS patients as well as our observations of impaired
motor performance as assessed on a Rotarod machine and mea-
suring the time of latency to drop from rotating rod (Fig. 1B), mus-
cle atrophy (Fig. 2B) and stride length (Fig. 2C).

Mutant profilin1 causes loss of ventral horn spinal neurons
A major characteristic of ALS and possible explanation for the re-
duced CMAP and NMJ number in tibialis and gastrocnemius mus-
cles of hPFN1G118V mice, respectively, is loss of large ventral horn
neurons in the lumbar spinal cord. The ventral horn of the spinal
cord houses most of the motor neurons that send their axons to
innervate skeletal muscles. To correlate the motor weakness and
early death in hPFN1G118V mice with the abundance of spinal ven-
tral horn neurons, we quantified the neurons by an unbiased ste-
reological method of cell counting that combines Nissl stain and a
Stereo Investigator computer program (MBF Bioscience, VT, USA).
This analysis revealed a significant and progressive loss of ventral
horn neurons in the fully symptomatic (beginning form P165) and
end stage (P202) of the disease in hPFN1G118V mice (Fig. 6).

Mutant profilin1 is associated with loss of ChAT and mislocalized
TDP-43
We also applied immunohistochemistry to spinal cord sections
from non-TG and hPFN1G118V mice at the end stage of disease to
assess key proteins indicators of the functional status of ventral

Figure 4. Assessment of compound muscle action potential (CMAP). (A)

Electrophysiology system for measuring CMAP from the tibialis anterior muscle

in the hind limbs of non-TG and hPFN1G118V mice. (B) Reduction of CMAP in

hPFN1G118V mice with end-stage disease at P202. 1) Representative CMAP record-

ings and 2) CMAP amplitudes recorded from the tibialis anterior muscle. Data

represent mean 6 SEM, n¼4. Data analysed by t-test.

Figure 5. Degeneration of myelinated axons and neuromuscular junctions in symptomatic hPFN1G118V mice. (A) Fluorescent immunostaining of neuromuscular junctions in

the gastrocnemius muscles of non-TG (P180) and hPFN1G118V mice at pre-symptomatic (P100), fully symptomatic (P165) and end-stage disease (P202). The red fluorescence is

Alexa Fluor 555 conjugated a-bungarotoxin (a-BTX), green fluorescence is combined anti-synaptophysin and anti-b-III-tubulin and merged image shows colocalization of a-

BTX and synaptophysinþ b-III-tubulin. (B) Percentage of innervated, intermediate innervated or denervated gastrocnemius NMJs assessed per animal (non-TG n¼5, total

NMJs assessed¼ 440; hPFN1G118V Pre Sym n¼4, total NMJs assessed¼ 525; hPFN1G118V Full Sym n¼4, total NMJs assessed¼537; hPFN1G118V Endstage n¼3, total NMJs as-

sessed¼754). Two-way ANOVA with Bonferroni multiple comparisons post-hoc testing was used, *P<0.05, **P<0.01, ***P<0.001). (C) Toluidine blue staining of semi-thin

sections of sciatic nerve from end-stage disease hPFN1G118V transgenic and non-TG mice. Degenerating myelinated axons (arrows) and glia containing phagocytized myelin

(arrowheads) were evident in sciatic nerves of endstage disease hPFN1G118V transgenic mice. Each panel represents a separate animal. Scale bars: A,C¼ 20lm.
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horn neurons (Fig. 7). Haematoxylin and Eosin (H&E) staining re-
vealed dysmorphic looking neurons in the ventral horn of
hPFN1G118V mice (Fig. 7A). Initially, we assessed the expression
of choline acetyltransferase (ChAT) in motor neurons, the en-
zyme responsible for the synthesis of the neurotransmitter ace-
tylcholine. Immunostaining showed that ChAT expression was
reduced in the spinal cord ventral horn neurons of hPFN1G118V

end-stage disease animals, compared to non-TG littermates
(Fig. 7B), indicating a likely deficit of acetylcholine neurotrans-
mitter for motor neuron activation. The immunostaining pat-
tern of TDP-43, an RNA editing protein associated with ALS
pathology, was more prominent and dense in the neuronal nu-
cleus in the spinal cord ventral horn of hPFN1G118V mice but not
in non-TG mice. We also qualitatively detected dense nuclear
and punctate cytoplasmic staining with an antibody against
TDP-43, in large ventral horn neurons, resembling skein-like
type staining, of spinal cord sections from end-stage disease
hPFN1G118V mice (Fig. 7C and D). We examined spinal cord sec-
tions with an antibody that detects phosphorylated TDP-43
(p409/410 TDP-43) and found a dense nuclear staining, which in-
dicates higher levels of phosphorylated TDP-43 in the nucleus
of the spinal cord neurons in hPFN1G118V mice (Fig. 7E and F).

Mutant profilin1 impairs actin polymerization
F/G-actin dynamics in motor neurons is important for cytoskel-
etal and axonal integrity. It was recently reported that reduced
F/G-actin ratio in primary motor neurons and Neuro-2A cells
impacts the cytoskeletal pathogenicity and toxicity of mutant
profilin1 (22,38). Transiently transfected neurons with a profi-
lin1, C71G or G118V DNA construct found to have shorter
dendrites, higher levels of G-actin, and aggregated profilin1 (22).
F/G-actin ratio has to be tightly regulated; otherwise, neuronal
functions depending on F-actin will be impaired. To assess the

effect of hPFN1G118V on actin dynamics, we examined the F/G-
actin ratio in lumbar spinal cord sections from hPFN1G118V mice
at presymptomatic, fully symptomatic and end-stage disease
and compared these with hPFN1WT and non-TG controls.
Sections were stained with phalloidin (labels F-actin) and
DNase I (labels G-actin). Signal intensity analysis indicated that
the F/G-actin ratio was reduced in the hPFN1G118V mouse spinal
cord lumbar sections, as compared with hPFN1WT and non-TG
controls (Fig. 8). At the presymptomatic disease stage, the F/G-
actin ratio was slightly lower in the hPFN1G118V spinal cord sec-
tions, but did not reach a significant difference to control mice;
however the ratio in the hPFN1G118V fully symptomatic and the
end-stage sections was significantly lower than controls. The F/
G-actin ratio in the spinal cord sections of non-TG or hPFN1WT
weren’t significantly different (Fig. 8). This is our first in vivo
finding of abnormal F/G-actin ratio, suggesting that mutant pro-
filin1 may be associated with dysregulation of actin polymeriza-
tion in vivo.

Mutant profilin1 and glial activation
In addition to motor neuron pathology and degeneration, we
found that mutant profilin1 expression causes glial cell activa-
tion. An increase in the expression profile of marker proteins for
astrocytes and microglia is typically a sign of their activation
and inflammatory reaction. We found notable increases of fluo-
rescently labelled astrocytes and glial cells in the lumbar spinal
cord regions of end-stage disease hPFN1G118V mice, as compared
to hPFN1WT and non-TG controls, using antibodies for astro-
cytes and microglial marker proteins (GFAP and Iba1, respec-
tively) (Fig. 9). Finding astrocytosis, microgliosis and neuronal
pathologies in hPFN1G118V mice (Figs 6 and 7) suggest that mu-
tant profilin1 toxicity may impact non-neuronal cell types and
may not be limited to motor neurons, suggesting a non-cell

Figure 6. Neuronal cell count in lumbar spinal cord from non-TG and hPFN1G118V mice. (A,B) The effect of hPFN1G118V protein toxicity on lumbar spinal neurons quanti-

fied by unbiased stereological count of Nissl stained neurons in spinal cords of hPFN1G118V mice at full symptomatic disease (P165–175) and end-stage disease (P165-

210). Nissl-stained count of lumbar spinal cord neurons from similarly aged littermates of control mice is quantified for comparison. High magnification images taken

under 40x objective form the black square area of the ventral horn of spinal cord from the 10x objective. Data were analysed by one way ANOVA with Tukey-Kramer

post-hoc. Values are mean 6 standard deviation with n¼6 per group. Scale bar¼ 100 lm.
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autonomous pathogenic mechanism in the profilin1 mutant
mouse model.

Mutant profilin1 aggregation and excess protein ubiquitination
To determine whether mutated profilin1 proteins aggregate,
spinal cord homogenates from fully symptomatic/end-stage
disease and age-matched hPFN1WT and non-TG control mice

were processed into soluble and insoluble fractions. The analy-
sis of immunoblots revealed that only insoluble fractions from
hPFN1G118V mice contained a specific band, recognized with an
anti-profilin1 antibody, which was absent in the insoluble frac-
tions obtained from non-TG and hPFN1WT mice (Fig. 10A). The
density of bands were quantified and presented as folds over
mouse profilin1 in non-TG control (Fig. 10C). We show by immu-
noblotting that the aggregation of mutant human profilin1
starts as early as P50 and there is a trend for increase of profilin1
aggregation in the spinal cord by age (Fig. 10D). We also probed
for ubiquitinated proteins, which commonly are observed in in-
clusion bodies in multiple neurodegenerative disorders, includ-
ing ALS. Western blotting of the soluble and insoluble fractions
from the spinal cords of hPFN1G118V mice revealed a heavy ubiq-
uitin signal, compared to hPFN1WT and non-TG controls (Fig.
10B), indicative of accumulation of ubiquitinated proteins
marked to be processed by the proteasome degradation system.
This type of protein modification is a profound resemblance to
pathology in spinal cords of human ALS patients, suggesting a
similar pathogenic mechanism might be at play in the
hPFN1G118V mouse.

Mutant profilin1 causes axonal degeneration and abnormal
fragmentation of mitochondrial outer membrane
To gain further insight into the effects of hPFN1G118V expression
on motor neuron ventral root axons, we utilized electron mi-
croscopy (EM) to visualize axons and organelles at the ultra-
structural level. EM images from transversely sectioned ventral
roots isolated from L1 to L5 spinal vertebrae demonstrated de-
generative axons and aberrant mitochondria with fragmented
outer membranes and irregular cristae in the hPFN1G118V mice,
as compared to non-TG controls. Irregularly shaped, non-
circular, shrunken, and collapsed axons were abundant in the
lumbar ventral roots of hPFN1G118V mice. This observed pathol-
ogy resembles Wallerian-like degeneration, denoted by separa-
tion and vacuolization of the myelin sheath and shrinkage of
axoplasm (Fig. 11), a pathology observed in ALS patients and
other neurodegenerative diseases (reviewed in (39)).

Mutant profilin1 causes upper motor neuron pathology
In addition to lower motor neuron pathology, we determined
whether mutant profilin1 expression causes degeneration of
upper motor neurons. To this end, we first assessed the overall
morphology of the brain. Nissl staining did not reveal any gross
morphological abnormalities in the cerebral cortex of
hPFN1G118V mice. The ventricles and different brain regions, in-
cluding the motor cortex, were comparable between non-TG
and hPFN1G118V mice (Fig. 12A and B). We used molecular
markers that are selectively expressed in the large corticospinal
motor neurons (CSMN), located in layer V of the motor cortex,
such as CTIP2 (Fig. 12C and D) and Cry-mu (Fig. 12E and F).
Higher magnification of Cry-mu expressing CSMN revealed re-
duced CSMN numbers (Fig. 12 E and F’). Although CSMN num-
bers were comparable between non-TG (WT) and hPFN1G118V

mice at mid-stage (P150) (non-TG: 79 6 4 CSMN, n¼ 3 mice,
n¼ 710 total neurons counted; hPFN1G118V: 87 6 3 CSMN, n¼ 3
mice, n¼ 780 total neurons counted), as assessed by the number
of CTIP2þ neurons in layer V of the motor cortex, there was a
significant reduction of CSMN at end-stage (P202) (non-TG:
77 6 4 CSMN, n¼ 6 mice, n¼ 1380 total neurons counted;
hPFN1G118V: 44 6 3 CSMN, n¼ 6 mice, n¼ 792 neurons counted).
CSMN numbers were significantly reduced in hPFN1G118V mice,
especially during the end stage of disease, but this was not due

Figure 7. Immunohistochemical analysis of lumbar spinal cord ventral horn. (A)

Spinal cord isolated from end-stage diseased mice (P165–210) were processed

and stained for pathological abnormalities. H&E stained sections show dysmor-

phic ventral horn neurons (arrows) in hPFN1G118V mice. (B) Micrograph of sec-

tions showing ChAT stained sections from hPFN1G118V spinal cord and light

staining for ChAT in the remaining neurons. (C) Spinal cord sections show ab-

normal TDP-43 staining in spinal ventral horn neurons from hPFN1G118V mice

during end-stage disease. (D) Micrograph of sections (high magnitude) stained

with anti-TDP-43 showing abnormal TDP-43 staining in spinal ventral horn neu-

rons from end-stage disease hPFN1G118V mice. (E and F) Micrograph of phospho-

TDP-43 staining (low & high magnitude) in the ventral horn neurons from end-

stage disease hPFN1 mice. Left panels are sections from non-TG littermates,

n¼3. Scale bars: A, B, D, F, 10 lm; C, E, 40 lm.
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to aging, as the numbers of CSMN in non-TG mice at two differ-
ent ages were comparable (Fig. 12G).

Apical dendrite degeneration in CSMN can become diseased
from different underlying causes (i.e., mSOD1G93A, lack of Alsin
function) (40–42), suggesting that apical dendrite degeneration
could be a common cellular pathology observed in diseased
CSMN. Therefore, we investigated whether apical dendrites of
CSMN retain their integrity or instead fail to maintain their
cyto-architecture, especially at the apical dendrite. Map2 immu-
nocytochemistry coupled with CTIP2 expression helped identify
CSMN and visualize their apical dendrites. Non-TG CSMN had
long, prominent apical dendrites that did not include any vacu-
oles. In striking contrast, CSMN in hPFN1G118V mice had multi-
ple abnormalities in their apical dendrites. In most cases, the
apical dendrites were filled with vacuoles, which varied by size

and number (Fig. 12H and I). Interestingly, these abnormalities
were present only in the CSMN of hPFN1G118V mice, suggesting
the presence of a cellular pathology that is especially observed
in CSMN in the presence of mutant profilin1.

Discussion
The present study reports a novel in vivo mouse model for ALS
overexpressing hPFN1G118V without a tag from a single trans-
gene DNA construct that exhibits behaviours and pathologies
closely resembling ALS. Since there is a biochemical evidence
that adding a tag on a relatively small profilin1 protein may in-
fluence its biochemical binding properties (43), we developed a
mouse model that can uniquely model the disease by express-
ing human mutant profilin1 unmodified. The ALS field has a

Figure 8. Actin dynamics in non-TG, hPFN1WT and hPFN1G118V mice. Lumbar spinal cord sections were processed to assess G-actin and F-actin status. Representative

images show (A) Phalloidin stain (green) Factin and DNase I stain (red) G-actin in ventral horn neurons of non-TG, hPFN1WT, and hPFN1G118V mice at presymptomatic,

fully symptomatic and end-stage disease, n¼9. (B) Quantification of phalloidin and DNases I signal density plotted as F/G-actin ratio. Values are mean 6 SEM. Data

analysed by t-test followed by two-way ANOVA Bonferroni. *P<0.05 relative to non-TG animals, n¼3, and 3-5 sections were examined per animal. Scale bar¼ 20 lm.

Figure 9. Glial cell activation in spinal cord ventral horn. Lumbar spinal cord sections were examined for glial activation and immunostained with (A) an astrocyte

marker (GFAP) and (B) microglia marker (IBA1), which revealed activation of glial cells in the spinal cords of end-stage disease hPFN1G118V, as compared to hPFN1WT

and non-TG mice (P175-P205), n¼ 3. Scale bar¼50 lm.
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limited number of reliable disease models available to re-
searchers, and this underscores the importance of introducing
and validating new mouse models. Our study led to the devel-
opment and detailed characterization of a transgenic mouse

model for ALS and investigated the effects of mutant profilin1
in vivo. We report our findings of neurotoxic mutant profilin1
and describe this novel ALS mouse model as a ‘new window’ of
opportunity for understanding the effects of mutant profilin1 in
ALS. As we demonstrated with evidence throughout this manu-
script, we found that the expression of hPFN1G118V in mice pro-
duces ALS-like symptoms, including loss of lower and upper
motor neurons, mutant profilin1 aggregation, abnormally
higher levels of ubiquitinated proteins, glial cell activation,
muscle atrophy, weight loss and early death. The hPFN1G118V

phenotype and pathology closely resembles the phenotype and
pathology of human ALS and aligns with other well-
characterized transgenic ALS mouse models, for example SOD1
mutants, suggesting shared pathological mechanisms, despite
different initial causative factors (11,12,15).

A reduction of ChAT, an important marker for cholinergic
neurons, in the ventral horn area of the lumbar spinal cord in
hPFN1G118V mice is consistent with a previous report of de-
creased ChAT activity in spinal cord motor neurons from hu-
man ALS patients (44–46). ChAT immunoreactivity reduction
indicates the health status of motor neurons in the hPFN1G118V

mouse spinal cord. In this study, we show that existing neurons
are unable to express high levels of ChAT, compared to wild
type controls.

Our analysis of ultrastructural images from ventral root
axons by EM shows multiple cellular abnormalities. These in-
clude fragmented mitochondria with membrane blebbing and
disorganized cristae, cytoskeletal abnormalities, separation and
vacuolization of the myelin sheath. These pathological findings
resemble Wallerian-like degeneration that occurs in many neu-
rodegenerative diseases, especially those in which axonal trans-
port is impaired (47). The degeneration may reflect the failure of
the cytoskeletal infrastructure in dendrites, axons and axonal
roots caused by a reduction in the F/G-actin ratio. These pathol-
ogies also are consistent with delivering insufficient quantities
of essential axonal proteins, like nicotinamide nucleotide
adenylyltransferase 2 (NMNAT2), a key initiating event for
Wallerian-like degeneration (48). Other studies have indicated
that ALS is a distal axonopathy (reviewed in (49)), although it re-
mains unclear whether the distal denervation is primary or sec-
ondary to progressive pathology in the motor neuron cell body.

In this study, we found significant neuromuscular junction
disruption and denervation of gastrocnemius muscle at the
fully symptomatic and end stages of disease. A recent study in
which primary mouse hippocampal neurons were transiently
transfected with mutant PFN1C71G reported an increase in den-
dritic arborization and spines, and cytoplasmic inclusions were
also found in the neurons (50). However, given the way mutant
PFN1C71G impairs profilin1 binding to actin, it is not clear how
PFN1C71G transient overexpression stimulation increase den-
dritic arborization and spines since these same neurons are
thought to be burdened with inclusions. Further studies are
needed to unravel the effects of mutant profilin1 on cytoskele-
ton and neuronal processes and determine whether distal axon-
opathy is the earliest event in PFN1G118V mice.

Other mutations in profilin1 (e.g., C71G, M114T) provide ex-
perimental evidence to link the pathogenesis of ALS to cytoskel-
etal defects (10,22), implying that impaired binding of profilin1
to actin may be an important factor for mutant profilin1 neuro-
toxicity in ALS. Our finding of a reduced F/G-actin ratio in lum-
bar spinal cord sections of end-stage disease hPFN1G118V

animals strengthens this hypothesis. The T109M and Q139L
mutations cause ALS despite unaltered actin binding properties.
These mutations are located on the PLP domain (51), which may

Figure 10. Mutant PFN1G118V aggregation and abnormal protein ubiquitination.

Western blot analysis of spinal cords from non-TG, hPFN1WT and hPFN1G118V

animals. (A) Profilin 1 signal in soluble (S) and insoluble (I) fractions. An antibody

against profilin1 recognizes both mouse and human PFN1. The same blot was

probed with anti-GAPDH. (B) Ubiquitinated proteins in soluble (S) and insoluble

(I) fractions show a dense smear of protein larger than 50 kDa. (C) Quantification

of PFN1 band intensity relative to GAPDH presented as mean 6 SEM. (D) Western

blot analysis and quantifications of band density of insoluble fractions from the

spinal cord of hPFN1G118V mice from P50 to end-stage disease, n¼3 per time

point. The increasing trend did not reach statistical significance. This blot was

probed with anti-GAPDH for loading control and quantification. Data analysed

by t-test followed by two-way ANOVA Bonferroni. *P<0.05, **P<0.01, ***P<0.001

relative to non-TG (S) or (I) respectively. (PD 175-PD 205), n¼3 per genotype.
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impact other profilin1 functions. This is an indication for di-
verse mechanism of profilin1 toxicity, which is discussed in de-
tails in our recent review (52). Other functions of profilin1,
independent of actin binding, also may be critical to the survival
of motor neurons and may contribute to the pathogenicity of
ALS. It is plausible that mutations in profilin1 may block the in-
teraction of profilin1 with its ligands and binding partners (i.e.,
SMN, huntingtin, valosin-containing protein (VCP), Ezrin, and
N-WASP) and may affect other important signaling events in
the motor neuron (28,53–55).

Actin polymerization is essential for the formation and re-
modeling of the cytoskeleton and outgrowth of axons and den-
drites. Actin polymerization is also important for cell motility,
actin attachment to microtubules, and anterograde and retro-
grade transport of mitochondria into axons and dendrites.
Profilin1 activity is particularly important for neurons because
of its association with a variety of ligands that are necessary for
the integrity of postsynaptic scaffolding, dendritic spine mor-
phology, growth cone formation, axon guidance, neurite out-
growth, clustering of receptors, membrane trafficking, and
endocytosis (28). Studies in primary motor neurons found path-
ological evidence that further links mutant profilin1 alterations
to ALS pathogenesis, strengthening the rationale for the in-
volvement of a cytoskeletal component in axonal degeneration
(22).

Since profilin1 is evolutionarily highly conserved
(Supplementary Material, Fig. S1B), its structural integrity must
be vital for its biological functions. As illuminated by a PyMOL-
generated model constructed from bovine profilin1 X-ray crystal
structure data, the G118V mutation in profilin1 is proximal to
the actin-binding site (Supplementary Material, Fig. S1A) and
may alter the secondary structure of profilin1 due to side chain
difference and impacting the folding and stability of the protein.
The aberrant conformation of the binding site alters profilin1–
actin interactions with actin and other binding partners. This
may have a direct effect on profilin1 stability, solubility, and for-
mation of inclusion bodies or alterations of cytoskeletal dynam-
ics that consequently lead to pathology. A recent study by Bosco
and colleagues (34) showed that ALS-linked mutations severely
destabilize the native conformation of profilin1 in vitro and
cause accelerated turnover of the profilin1 protein in cells.
Thermochemical analyses of the profilin1 variants C71G,
M114T, and G118V suggest a severe effect on tertiary conforma-
tion and that PFN1C71G and PFN1M114T, but not PFN1E117G, are
destabilized as compared to PFN1WT (34). The observation that

most ALS-linked profilin1 variants are highly prone to aggrega-
tion in cultured mammalian cells suggests that the disease-
causing mutations induce an abnormal protein conformation
(22). Our study and other independent research teams provide
support for the concept that profilin1 mutations contribute to
ALS pathogenesis by diverse mechanisms (51,56–58). New evi-
dence for the mechanism of profilin1 toxicity that involve the
PLP binding domain as well as the actin-binding domain is gain-
ing support. Although, the mutations in the PLP domain of profi-
lin1 (T109M, R136W, Q139L) suggest a more global effect on
profilin1 and the toxicity may be caused by actin-binding and
other domains, hence actin dynamics and cytoskeletal dysfunc-
tion are parts of a bigger picture of neuronal dysfunction (51,58).

Since TAR DNA-binding protein 43 (TDP-43) is a major com-
ponent in aggregates of ubiquitinated proteins in most types of
ALS (8,59,60), it is intriguing that the G118V mutation produced
profilin1 aggregation and sequestering of endogenous TDP-43
(38). Co-aggregation of mutant profilin1 with TDP-43 may result
in a gain-of-toxic-function of profilin1 mutants. Our results give
evidence towards this. We found that TDP-43 abnormally
stained in the spinal cord sections of hPFN1G118V mice (Fig. 7C
and D) and that immunostaining show that phosphorylated
TDP-43 was increased in the nucleus of neurons in the spinal
cord of hPFN1G118V mice (Fig. 7E and F).

Exploration of the profilin1 transgenic mouse model in rela-
tion to other ALS models provides an extraordinary opportunity
to gain insight into the mechanisms of motor neuron degenera-
tion and shed light on shared pathways of disease pathogene-
sis, despite different causative factors. This new tool in ALS
research invites further investigation of profilin1 toxicity, and it
can serve as a novel platform to explore cytoskeletal and axonal
dysfunctions in ALS and to validate screening of new therapeu-
tics for human ALS.

While our manuscript report of this study was under review,
a manuscript was published describing the generation and
characterization of another transgenic profilin1 mouse model
that expresses V5-PFN1C71G and develops ALS-like symptoms
(61). This report is interesting and is significant for the proof of
concept that a mutation in profilin1 is one of the main contribu-
tors to ALS. A new milestone in ALS research has been reached
in that two independent laboratories demonstrate that a profi-
lin1 mutation is a cause for ALS by G118V and C71G in the profi-
lin1 protein. The transgenic profilin1 mice, reported by Yang
et al., 2016, developed robust ALS-like symptoms and patholo-
gies, but multiple transgenes were needed to express high levels

Figure 11. Electron micrographs of ventral root motor axons from hPFN1G118V and non-TG controls. Ultrastructure of lumbar spinal cord, ventral root axons (VR) from

non-TG and end-stage hPFN1G118V animals were examined by electron microscopy. (A) Non-TG VR reveals normal axons and normal mitochondria (inset A1). (B)

hPFN1G118V VR shows distorted axons containing fragmented mitochondria (inset B1); membrane blebbing and disorganized cristae are also seen. Asterisks mark

clasped, shrunk and degenerating axons. (C) hPFN1G118V VR axon at higher magnification demonstrates separation and vacuolization of damaged myelin sheath and

clasping axoplasm. (D) hPFN1G118V VR axon shows vacuoles (short arrows) and the remainder of the damaged mitochondria (long arrow). Representative image of

n¼4. Scale bars A, B¼ 5 lm; C¼2 lm; D¼1 lm, A1¼200 nm, B1¼100 nm.
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Figure 12. CSMN undergo cellular degeneration in hPFN1G118V mice. (A) Non-TG mice. (B) hPFN1G118V mice. The cerebral cortex appears normal with Nissl staining. The

thickness of the motor cortex, size of the ventricles and the cortical layers are comparable, without any signs of massive cortical degeneration. (C,D) High levels of

CTIP2 expression marks large pyramidal CSMN in layer V of the motor cortex of both non-TG and hPFN1G118V mice (C), albeit with a potential for reduction in

hPFN1G118V mice, as observed in four independent samples. (E,F) Cry-mu, another cellular marker for CSMN, also displays a differential expression pattern in non-TG

(E) versus hPFN1G118V mice (F). The reduction in Cry-mu expression of CSMN is more evident in higher magnification (E’-F’). (G) Quantitative assessment of CSMN num-

bers, based on CTIP2 expression, reveal significant neuron loss, especially during end-stage disease. Bar graph represents the average number of CSMN per 10�objec-

tive field in layer V of the motor cortex of non-TG and hPFN1G118V mice during mid-stage disease (n¼3 mice for both genotype) and end-stage disease (n¼6 mice for

both genotype, 3F, 3M). Bar graphs represent mean 6 SEM. Data analysed with a one-way ANOVA with post hoc Tukey’s multiple comparison tests. ****P<0.0001. Scale

bars: A, B¼200 lm; C, D¼100 lm; E, F¼150 lm. (H,I) Vacuolization of apical dendrites of diseased CSMN. CTIP2 coupled with Map2 immunocytochemistry reveals pro-

found defects in the apical dendrites of diseased CSMN (H) Four different representative images of non-TG CSMN with healthy apical dendrites. Arrows indicate apical

dendrites, which are enlarged to the side. (I) Four different representative images of CSMN in hPFN1G118V mice during end-stage disease. Even though cell bodies are

comparable to the non-TG CSMN, the apical dendrites include many vacuoles that are only seen in the brain motor cortex of hPFN1G118V mice. Arrows indicate the site

of apical dendrites with profound defects, which are enlarged to the side. Scale bar¼20 lm.
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of mutant profilin1 protein to reduce ALS age of onset because
the single transgene mice (Thy1.2-PFN1C71G) had an onset of
weakness at �350 days. Two Prp-PFN1C71G lines did not develop
any ALS phenotypes up to P700. Authors crossed the Thy1.2-
PFN1C71G littermates to double the transgene and developed ho-
mozygote mice in an effort to further increase transgene ex-
pression. These double transgenic Thyl-PFN1C71G mice were
further crossed with a Prp-PFN1C71G line to create a new triple
transgenic line that enabled higher expression levels of mutant
profilin1 from multiple loci. The age of disease onset was at
�P140 with paralysis at �P211, on average. This mouse model
could serve as a tool to investigate profilin1 with C71G mutation
and neurotoxicity in ALS.

The mouse model that we developed in our laboratory and
described herein expresses a high level of mutant profilin1 from
a single DNA construct transgene and develop motor weakness
at P130–140 and succumb to death because of ALS at P202, on
average. This long symptomatic period will enable ALS re-
searchers to utilize this new mouse model to address the neuro-
toxicity, proteinopathy, cytoskeletal defects and axonal
degeneration caused by profilin1 with a G118V mutation. This
model is valuable for mechanistic studies and development of
therapeutic strategies and can be paired with existing and fu-
ture ALS mouse models. This is due to the fact that the neurode-
generation and ALS-like symptoms and pathologies are induced
by single transgene DNA vector expressing human profilin1
without any tag.

Since cytoskeletal defects in the brain, and spinal cord tis-
sues emerge as one the most important causes of motor neuron
vulnerability and progressive degeneration in ALS, here we offer
a novel mouse model that can be used to not only study the de-
tails of the cytoskeletal defects, cellular mechanisms affected
and the underlying causes of the pathology but also for transla-
tional studies in the near future.

Materials and Methods
Development of mouse model for ALS

Animals were housed in the animal quarters under 12-hour
light/dark conditions and fed 4–5 gram chow diet (Harlan/
Teklad #7001) per day per mouse with free access to water. All
experimental procedures were conducted in accordance with
the Institutional Animal Care and Use Committee (IACUC)
guidelines of the University of Arkansas for Medical Sciences
(UAMS).

Generation of transgenic hPFN1G118V and hPFN1WT mice

Constructs expressing either wild type (hPFN1WT) or mutant
(hPFN1G118V) untagged human profilin1 (Supplementary
Material, Fig. S1) were obtained from (NorClone, London,
Ontario, Canada). cDNAs were inserted downstream of the
mouse prion promoter (moPrP) to achieve robust CNS-specific
expression of the single transgene (62) because this promoter
has been widely used to model neurodegenerative diseases and
ALS (15,36,63). The human wild type and mutant profilin1 cDNA
sequences are available upon request. Transgenic mice were
produced by pronuclear injection of C57BL/6 fertilized eggs at
the UAMS Transgenic Mouse Core facility. All transgenic devel-
opment procedures were reviewed and approved by the UAMS
IACUC and the Central Arkansas Veterans Healthcare System.
Mice were genotyped for the presence of the transgene and
founders were closely monitored for manifestation of ALS-like

symptoms. Males and females were used at equal ratios, where
it was possible. To prevent the tendency to become overweight,
mice were fed 4–5 grams of regular chow per mouse, per day
with the approval of UAMS IACUC.

Genotyping

Mouse genomic DNA was isolated from �3 mm tail biopsies
with Maxwell 16 mouse tail DNA purification kit (Catalog #
AS1120, Promega, Madison, WI) and used as a template for gen-
otyping. PCR was performed using the following steps: 94�C
5 min, (94�C 30 s, 56�C 30 s, 72�C 1 min)x35, 72�C 3 min, and hold
4�C until stopped. Once the genotyping protocol was estab-
lished, a DNA template for PCR was isolated from �3 mm tail bi-
opsies by incubation in 75 ml alkaline lysis buffer (25 mM NaOH,
0.2 mM disodium EDTA, pH¼ 12) for 30 min at 95�C. This was
followed by 75 ml neutralization solution (40 mM Tris-HCl) for
10 min at 4�C. 2 ml of the solution was used as DNA template,
and PCR with SigmaRED PCR ReadyMix (Sigma, Catalog # R4775)
was performed. The PCR products were loaded on a 2% agarose
gel, separated by electrophoresis in 1XTAE buffer, and visual-
ized with SYBR Safe DNA gel stain (Sigma, Catalog # S33102).
Primers used for genotyping human PFN1 transgenic mice were:
hPFN1 forward: GTTATGAAATGGCCTCCCACCT, mPrp reverse:
TCAGTGCCAGGGGTATTAGC. A unique product length of 190-bp
was generated from the hPFN1 cDNA transgene. mPrp forward:
GAGCAGGCCCATGATCCATT, mPrP reverse: TCAGTGCCAGGG
GTATTAGC. The product length of 506-bp was generated from
mouse endogenous gene.

Motor performance assessment by rotarod apparatus

Motor performance was assessed using a rotarod apparatus
(Harvard Panlab Rota-Rod apparatus, Holliston, MA), as de-
scribed elsewhere (64). Briefly, motor performance was mea-
sured via the latency to fall from a rod rotating at a constant
speed of 12 rotations per minute (rpm). A perfect score of 180 s
without falling was the benchmark used to track performance.
Each mouse participated in three trials per test session (max
3 min), with the best result of three trials recorded.

Gait analysis

Mouse gait parameters were assessed using Noldus CATWALK
as well as by manual application of non-toxic ink to paws. The
imprints of ink paws on paper were used to access gait abnor-
mality and stride lengths.

Weight

Animal weights were recorded twice a week starting at P50.

Western blotting

Fresh or snap-frozen tissues were homogenized with RIPA buffer,
mixed with sample loading buffer (6% SDS, 15% 2-mercaptoetha-
nol, 30% glycerol, and 0.3 mg/ml bromophenol blue in 188 mM
Tris-HCl, pH 6.8), heated at 90 �C for 10 min, and separated by 4–
12% Bis-Tris Gel (Invitrogen). Separated proteins in the gels were
transferred onto nitrocellulose membrane at 380 mA for 45 min
(30). The blotted membrane was blocked with 5% skim milk in
TBS containing 0.05% Tween 20 (TBS-T buffer) for 30–60 min.
After washing the membrane with TBS-T primary antibodies,
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including profilin1 (Sigma Catalog # P7749), ubiquitin (Millipore
Catalog # MAB1510), and GAPDH (Cell Signaling Catalog# 14C10),
it was diluted in TBS-T, 5% milk was added, and the membrane
was incubated overnight at 4 �C. The bound antibodies were de-
tected by horseradish peroxidase-conjugated secondary antibody
(Amersham Corp.) followed by the ECL detection system
(Amersham), according to the manufacturer’s instruction.

Soluble and insoluble fractionation

Freshly isolated or frozen spinal cords were processed for frac-
tionation, as described in Wu et al., 2012 with some modifica-
tions. Isolated tissues were homogenized in NP-40 lysis buffer
containing (1% NP-40, 20 mM TrisHCl pH. 7.4, 150 mM NaCl,
5 mM EDTA, 10% glycerol, 1 mM DTT, 10 mM sodium fluoride,
1 mM sodium orthovanadate, 5 mM sodium pyrophosphate)
with EDTA-free protease inhibitors (Complete, Roche). The ly-
sates were rotated for 30 min at 4 �C, followed by centrifugation
at 13,500 rpm for 20 min. The supernatant was removed and
used as the soluble fraction. To remove carryovers, the pellet
was washed with lysis buffer and resuspended in urea-SDS buf-
fer (NP-40 Lysis Buffer with 8 M urea/3% SDS) followed by soni-
cation. The lysate was then spun again for 20 min at 4� C and
the supernatant was removed (insoluble fraction). Protein con-
centrations were determined by the BCA assay.

Perfusion

Mice were deeply anaesthetized with isoflurane, followed by
transcardial perfusion with 4% paraformaldehyde for immuno-
histochemistry or 4% paraformaldehyde and 2.5% glutaralde-
hyde for electron microscopy. Brain, spinal cord, and
gastrocnemius muscle were removed and post-fixed overnight
in 4% paraformaldehyde or 4% paraformaldehyde and 2.5% glu-
taraldehyde, as previously described (64).

Immunohistochemistry

Paraffin-embedded sections
Brains were sectioned coronally (50lm thick) using a vibratome
(Leica) and collected in 12-well plates. Immunocytochemistry was
performed on every 12th tissue section. Sections were mounted
onto glass slides and dried overnight at ambient temperature.
They were then deparaffinized with xylene, hydrated in descend-
ing concentrations of ethanol, rinsed in water, and immersed in
0.5% cresyl violet for 3 hours. After dehydration in ascending etha-
nol and xylene, the slides were cover slipped with DEPEX
Mounting Media (Electron Microscopy Sciences). Sections were in-
cubated with 0.01 M sodium citrate, pH 9.0 in an 80� C water bath
for 3 hours for antigen retrieval followed by blocking (PBS, 0.05%
BSA, 2% FBS, 1% Triton X-100, and 0.1% saponin). Primary antibod-
ies for profilin1 (1:1000, Sigma), anti-Map2 (1:500; Millipore), anti-
Ctip2 (1:500; Abcam), and anti-Cry-mu (1:200; Atlas Antibodies)
were applied and incubated overnight at 4� C. Secondary antibod-
ies (i.e., 1:500, Alexa-Flour 488 or 647; Invitrogen) were applied in
blocking solution for 2 hours at room temperature in the dark.
Sections were mounted and cover slipped with Fluoromount
(Electron Microscopy Sciences). Quantification of pixel (DAB in-
duced brown colour) was analysed by ImageJ.

Frozen sections
Tissues were cryopreserved by incubation in 20% sucrose until
tissue sank (1–2 days), frozen in the TissueTek cutting medium

(Sakura Finetek, Torrance, CA). The spinal cords were cut into
longitudinal sections 30 mm in thickness with cryostat (Leica
CM1900). Unspecific binding sites were blocked by incubation
with (PBS, 5% FBS, 0.5% Triton X-100) for 2 hours at room temper-
ature. Primary and secondary antibodies were suspended in (PBS,
1% FBS, 0.1% Triton X-100). Sections were incubated overnight at
4� C with primary antibodies: profilin1 (1:1000, Sigma), GFAP
(1:1000; Novus Biologicals NB-300-141), and IBA1 (1:1000; Wako
019-19741) and 2 hours at room temperature with secondary anti-
bodies (i.e., 1:500, Alexa-Flour 488 or 647; Invitrogen). F/G-actin ra-
tio was assayed by staining tissues with phalloidin (1:200, Sigma)
to detect F-actin and DNaseI conjugates (1:200, ThermoFisher) to
detect G-actin. Sections were mounted onto glass slides with
DAPI/anti-fade mounting medium (Vector Laboratories). Images
were taken with Zeiss Confocal Microscope Confocal LSM 510
(Zeiss, Thornwood, NY). Quantification of fluorescence intensity
was analysed by ImageJ.

Neuromuscular junction immunohistochemistry

Gastrocnemius muscle was dissected from mice, fixed with 4%
paraformaldehyde, and processed as described in (16).

Electron microscopy

Spinal cord ventral roots were dissected and fixed overnight at
4 �C in 2.5% glutaraldehyde (Electron Microscopy Sciences)/
0.05% malachite green (Sigma) in 0.1M sodium cacodylate buf-
fer, ph 7.2 (EMS). After washing with 0.1M sodium cacodylate
buffer, the samples were postfixed for 2 hours with 1% osmium
tetroxide (EMS)/0.8% potassium hexaferrocyanide (Sigma) for
2 hours and 1% tannic acid (EMS) for 20 min. The samples were
rinsed with molecular grade water, stained with 0.5% uranyl ac-
etate (EMS) for 1 hour, and then dehydrated with a graded alco-
hol series and propylene oxide before embedding in Araldite/
Embed 812 (EMS). Thin sections were cut on a Leica UC7 ultra-
microtome, collected on formvar carbon coated slot grids, and
post stained with uranyl acetate and lead citrate. Imaging was
taken with a Technai F20 (FEI) at 80kv.

Measurement of CMAP amplitude

With the mouse under 2% isoflurane anaesthesia, the sciatic
nerve was stimulated percutaneously by single pulses of 0.1 ms
duration (VikingQuest NCS/EMG Portable EMG machine) deliv-
ered through a pair of needle electrodes placed at the sciatic
notch. CMAP was recorded with the recording electrode placed
sub-dermally on the muscle belly of the TA muscle. A reference
electrode was placed near the ankle and a ground electrode at
the animals’ back, near the midline. Disposable mono-polar
needle electrodes (25mm, 28G; catalog # 902-DMF25-TP, Natus
Medical Inc., San Carlos, CA) were used for both stimulating and
recording. The CMAP trace used for analysis from a given ani-
mal/leg was obtained from 4 supra-maximal stimuli. The CMAP
value of an individual animal at a given time point represents
the averaged peak-to-peak amplitude of both left and right legs.
CMAP plot represents average CMAP of all animals 6 SEM. Data
were analysed with unpaired t-tests.

Stereological cell counts

Nissl positive neurons were counted using standard procedures
for stereological analysis, as performed routinely in our labora-
tory and described elsewhere (65).
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Imaging and quantification of CSMN

Sections were analysed using an Eclipse TE2000-E microscope
(Nikon). Epifluorescence images were acquired with a Digital
Sight DS-Qi1MC CCD camera (Nikon), and light images were ac-
quired with Digital Sight DS-Fi1 camera (Nikon). Quantitative
analyses were performed on 3 matched sections (Section1:
Bregma 1.18 mm, interaural 4.98 mm; Section 2: Bregma 0.74 mm,
interaural 4.54 mm; Section 3: Bregma 0.14 mm, interaural
3.94 mm) that spanned the motor cortex from hPFN1G118V mice
(at the onset of ALS, n¼ 3; end-stage disease n¼ 6) and age-
matched wild type mice (non-TG), (n¼ 3; end-stage disease n¼ 6).
An equivalent area of the motor cortex in three serial sections (at
least �600 mm apart) was imaged with 10X objective field per
mouse that represents the motor cortex area. The total numbers
of large-diameter, Ctip2þ neurons in layer V of the motor cortex
were blindly counted in a total of three sections per mouse.

Nissl staining

Sections were stained with 0.75% cresyl violet, dehydrated
through graded alcohols (70, 95, 100% 2�), placed in xylene and
cover slipped using DPX mountant.

H&E staining

H&E staining was performed on 5lm paraffin sections using
standard H&E staining protocol.

Statistical analyses

All statistical analyses were performed using Prism software
(version 5; Graphpad Software Inc., La Jolla, CA). D’Agostino and
Pearson Normality tests were performed on all data prior to
analysis. Statistical differences between non-TG, hPFN1WT and
hPFN1G118V mice were determined using a one-way ANOVA
with post hoc Tukey’s multiple comparison tests using
GraphPad. Repeated measure ANOVA was used for weight and
Rotarod data. Kaplan-Meier analysis was used for survival data.
Data were considered statistically significant at P< 0.05.

Supplementary Material
Supplementary Material is available at HMG online.
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