4,824 research outputs found
Metallic multilayers for X-band Bragg reflector applications
We present a structural and high frequency (8.72GHz) electrical characterization of sputter deposited Ti/W, Ti/Ru and Mo/Ti metallic multilayers for potential application as acoustic Bragg reflectors. We prove that all metallic multilayers comprised of different acoustic impedance metals such as Ti, W, Mo are promising candidates for Bragg reflector/bottom electrode in full X-band thin film acoustic resonators. Values for high frequency resistivity of the order of are measured by use of a contact-free/non-invasive sheet resistance method
A Self-Reference False Memory Effect in the DRM Paradigm: Evidence from Eastern and Western Samples
It is well established that processing information in relation to oneself (i.e., selfreferencing) leads to better memory for that information than processing that same information in relation to others (i.e., other-referencing). However, it is unknown whether self-referencing also leads to more false memories than other-referencing. In the current two experiments with European and East Asian samples, we presented participants the Deese-Roediger/McDermott (DRM) lists together with their own name or other people’s name (i.e., “Trump” in Experiment 1 and “Li Ming” in Experiment 2). We found consistent results across the two experiments; that is, in the self-reference condition, participants had higher true and false memory rates compared to those in the other-reference condition. Moreover, we found that selfreferencing did not exhibit superior mnemonic advantage in terms of net accuracy compared to other-referencing and neutral conditions. These findings are discussed in terms of theoretical frameworks such as spreading activation theories and the fuzzytrace theory. We propose that our results reflect the adaptive nature of memory in the sense that cognitive processes that increase mnemonic efficiency may also increase susceptibility to associative false memories
Recommended from our members
Divided attention selectively impairs memory for self-relevant information
Information that is relevant to oneself tends to be remembered more than information that relates to other people, but the role of attention in eliciting this "self-reference effect" is unclear. In the present study, we assessed the importance of attention in self-referential encoding using an ownership paradigm, which required participants to encode items under conditions of imagined ownership by themselves or by another person. Previous work has established that this paradigm elicits a robust self-reference effect, with more "self-owned" items being remembered than "other-owned" items. Access to attentional resources was manipulated using divided-attention tasks at encoding. A significant self-reference effect emerged under full-attention conditions and was related to an increase in episodic recollection for self-owned items, but dividing attention eliminated this memory advantage. These findings are discussed in relation to the nature of self-referential cognition and the importance of attentional resources at encoding in the manifestation of the self-reference effect in memory
Long-range transfer of electron-phonon coupling in oxide superlattices
The electron-phonon interaction is of central importance for the electrical
and thermal properties of solids, and its influence on superconductivity,
colossal magnetoresistance, and other many-body phenomena in
correlated-electron materials is currently the subject of intense research.
However, the non-local nature of the interactions between valence electrons and
lattice ions, often compounded by a plethora of vibrational modes, present
formidable challenges for attempts to experimentally control and theoretically
describe the physical properties of complex materials. Here we report a Raman
scattering study of the lattice dynamics in superlattices of the
high-temperature superconductor and the
colossal-magnetoresistance compound that suggests
a new approach to this problem. We find that a rotational mode of the MnO
octahedra in experiences pronounced
superconductivity-induced lineshape anomalies, which scale linearly with the
thickness of the layers over a remarkably long range of
several tens of nanometers. The transfer of the electron-phonon coupling
between superlattice layers can be understood as a consequence of long-range
Coulomb forces in conjunction with an orbital reconstruction at the interface.
The superlattice geometry thus provides new opportunities for controlled
modification of the electron-phonon interaction in complex materials.Comment: 13 pages, 4 figures. Revised version to be published in Nature
Material
Spontaneous and deliberate future thinking: A dual process account
© 2019 Springer Nature.This is the final published version of an article published in Psychological Research, licensed under a Creative Commons Attri-bution 4.0 International License. Available online at: https://doi.org/10.1007/s00426-019-01262-7.In this article, we address an apparent paradox in the literature on mental time travel and mind-wandering: How is it possible that future thinking is both constructive, yet often experienced as occurring spontaneously? We identify and describe two ‘routes’ whereby episodic future thoughts are brought to consciousness, with each of the ‘routes’ being associated with separable cognitive processes and functions. Voluntary future thinking relies on controlled, deliberate and slow cognitive processing. The other, termed involuntary or spontaneous future thinking, relies on automatic processes that allows ‘fully-fledged’ episodic future thoughts to freely come to mind, often triggered by internal or external cues. To unravel the paradox, we propose that the majority of spontaneous future thoughts are ‘pre-made’ (i.e., each spontaneous future thought is a re-iteration of a previously constructed future event), and therefore based on simple, well-understood, memory processes. We also propose that the pre-made hypothesis explains why spontaneous future thoughts occur rapidly, are similar to involuntary memories, and predominantly about upcoming tasks and goals. We also raise the possibility that spontaneous future thinking is the default mode of imagining the future. This dual process approach complements and extends standard theoretical approaches that emphasise constructive simulation, and outlines novel opportunities for researchers examining voluntary and spontaneous forms of future thinking.Peer reviewe
Two-dimensional Vortices in Superconductors
Superconductors have two key characteristics. They expel magnetic field and
they conduct electrical current with zero resistance. However, both properties
are compromised in high magnetic fields which can penetrate the material and
create a mixed state of quantized vortices. The vortices move in response to an
electrical current dissipating energy which destroys the zero resistance
state\cite{And64}. One of the central problems for applications of high
temperature superconductivity is the stabilization of vortices to ensure zero
electrical resistance. We find that vortices in the anisotropic superconductor
BiSrCaCuO (Bi-2212) have a phase transition from
a liquid state, which is inherently unstable, to a two-dimensional vortex
solid. We show that at high field the transition temperature is independent of
magnetic field, as was predicted theoretically for the melting of an ideal
two-dimensional vortex lattice\cite{Fis80,Gla91}. Our results indicate that the
stable solid phase can be reached at any field as may be necessary for
applications involving superconducting magnets\cite{Has04,Sca04,COHMAG}. The
vortex solid is disordered, as suggested by previous studies at lower
fields\cite{Lee93,Cub93}. But its evolution with increasing magnetic field
displays unexpected threshold behavior that needs further investigation.Comment: 5 pages and 4 figures. submitted to Nature Physic
Therapeutic Efficacy of Potent Neutralizing HIV-1-Specific Monoclonal Antibodies in SHIV-Infected Rhesus Monkeys
HIV-1-specific monoclonal antibodies (mAbs) with extraordinary potency and breadth have recently been described. In humanized mice, combinations of mAbs have been shown to suppress viremia, but the therapeutic potential of these mAbs has not yet been evaluated in primates with an intact immune system. Here we show that administration of a cocktail of HIV-1-specific mAbs, as well as the single glycan-dependent mAb PGT121, resulted in a rapid and precipitous decline of plasma viremia to undetectable levels in rhesus monkeys chronically infected with the pathogenic virus SHIV-SF162P3. A single mAb infusion afforded up to a 3.1 log decline of plasma viral RNA in 7 days and also reduced proviral DNA in peripheral blood, gastrointestinal mucosa, and lymph nodes without the development of viral resistance. Moreover, following mAb administration, host Gag-specific T lymphocyte responses exhibited improved functionality. Virus rebounded in the majority of animals after a median of 56 days when serum mAb titers had declined to undetectable levels, although a subset of animals maintained long-term virologic control in the absence of further mAb infusions. These data demonstrate a profound therapeutic effect of potent neutralizing HIV-1-specific mAbs in SHIV-infected rhesus monkeys as well as an impact on host immune responses. Our findings strongly encourage the investigation of mAb therapy for HIV-1 in humans
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Rapidity and Centrality Dependence of Proton and Anti-proton Production from Au+Au Collisions at sqrt(sNN) = 130GeV
We report on the rapidity and centrality dependence of proton and anti-proton
transverse mass distributions from Au+Au collisions at sqrt(sNN) = 130GeV as
measured by the STAR experiment at RHIC. Our results are from the rapidity and
transverse momentum range of |y|<0.5 and 0.35 <p_t<1.00GeV/c. For both protons
and anti-protons, transverse mass distributions become more convex from
peripheral to central collisions demonstrating characteristics of collective
expansion. The measured rapidity distributions and the mean transverse momenta
versus rapidity are flat within |y|<0.5. Comparisons of our data with results
from model calculations indicate that in order to obtain a consistent picture
of the proton(anti-proton) yields and transverse mass distributions the
possibility of pre-hadronic collective expansion may have to be taken into
account.Comment: 4 pages, 3 figures, 1 table, submitted to PR
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
- …
