2,949 research outputs found
Novice and Expert Observer Accuracy of the Threshold Wheelchair Skill: A Pilot Eye-Tracking Study
Background: Moving a wheelchair over a low threshold is an entry-level mobility skill. Observation is critical to the assessment and training of this skill. The primary objective of this exploratory pilot study was to determine if a difference between novice and expert visual attention allocation pattern was linked to the accuracy of rating skill performance and decision confidence.
Methods: Twelve expert occupational therapists and nine non-expert occupational therapy students observed 30 first-attempt recordings of able-bodied persons learning the low threshold skill. Randomized recordings included 10 recordings from each rating group of “pass,” “pass with difficulty (pwd), and “fail.” Skill ratings, confidence ratings, time to decision, and SR Eyelink 1000+ monitored eye movements were recorded.
Results: No significant group differences were found in the correct identification skill rating, though significant relationships were found with experts rating higher confidence in their decision-making and generally faster reaction times. While trends of eye movements differences were found between groups, only the number of areas of interest viewed in pwd videos was a potential rating correctness predictor.
Conclusion: Improved confidence in decision-making did not mean improved assessment accuracy. The pwd video stimuli created the opportunity for assessing observation patterns differences. Further study is recommended
Cosmogenic nuclides indicate that boulder fields are dynamic, ancient, multigenerational features
Boulder fields are found throughout the world; yet, the history of these features, as well as the processes that form them, remain poorly understood. In high and mid-latitudes, boulder fields are thought to form and be active during glacial periods; however, few quantitative data support this assertion. Here, we use in situ cosmogenic 10Be and 26Al to quantify the near-surface history of 52 samples in and around the largest boulder field in North America, Hickory Run, in central Pennsylvania, USA. Boulder surface 10Be concentrations (n = 43) increase downslope, indicate minimum near-surface histories of 70-600 k.y., and are not correlated with lithology or boulder size. Measurements of samples from the top and bottom of one boulder and three underlying clasts as well as 26Al/10Be ratios (n = 25) suggest that at least some boulders have complex exposure histories caused by flipping and/or cover by other rocks, soil, or ice. Cosmogenic nuclide data demonstrate that Hickory Run, and likely other boulder fields, are dynamic features that persist through multiple glacial-interglacial cycles because of boulder resistance to weathering and erosion. Long and complex boulder histories suggest that climatic interpretations based on the presence of these rocky landforms are likely over simplifications
Multi-Element Abundance Measurements from Medium-Resolution Spectra. II. Catalog of Stars in Milky Way Dwarf Satellite Galaxies
We present a catalog of Fe, Mg, Si, Ca, and Ti abundances for 2961 red giant
stars that are likely members of eight dwarf satellite galaxies of the Milky
Way (MW): Sculptor, Fornax, Leo I, Sextans, Leo II, Canes Venatici I, Ursa
Minor, and Draco. For the purposes of validating our measurements, we also
observed 445 red giants in MW globular clusters and 21 field red giants in the
MW halo. The measurements are based on Keck/DEIMOS medium-resolution
spectroscopy combined with spectral synthesis. We estimate uncertainties in
[Fe/H] by quantifying the dispersion of [Fe/H] measurements in a sample of
stars in monometallic globular clusters. We estimate uncertainties in Mg, Si,
Ca, and Ti abundances by comparing our medium-resolution spectroscopic
measurements to high-resolution spectroscopic abundances of the same stars. For
this purpose, our DEIMOS sample included 132 red giants with published
high-resolution spectroscopy in globular clusters, the MW halo field, and dwarf
galaxies. The standard deviations of the differences in [Fe/H] and [alpha/Fe]
(the average of [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe]) between the two samples
is 0.15 and 0.16, respectively. This catalog represents the largest sample of
multi-element abundances in dwarf galaxies to date. The next papers in this
series draw conclusions on the chemical evolution, gas dynamics, and star
formation histories from the catalog presented here. The wide range of dwarf
galaxy luminosity reveals the dependence of dwarf galaxy chemical evolution on
galaxy stellar mass.Comment: 26 pages, 22 figures, 4 machine-readable tables (available in the
source file; click "Other formats"); accepted for publication in ApJ
Supplements; updated acknowledgments in v
Evolution of surface gravity waves over a submarine canyon
The effects of a submarine canyon on the propagation of ocean surface waves
are examined with a three-dimensional coupled-mode model for wave propagation
over steep topography. Whereas the classical geometrical optics approximation
predicts an abrupt transition from complete transmission at small incidence
angles to no transmission at large angles, the full model predicts a more
gradual transition with partial reflection/transmission that is sensitive to
the canyon geometry and controlled by evanescent modes for small incidence
angles and relatively short waves. Model results for large incidence angles are
compared with data from directional wave buoys deployed around the rim and over
Scripps Canyon, near San Diego, California, during the Nearshore Canyon
Experiment (NCEX). Wave heights are observed to decay across the canyon by
about a factor 5 over a distance shorter than a wavelength. Yet, a spectral
refraction model predicts an even larger reduction by about a factor 10,
because low frequency components cannot cross the canyon in the geometrical
optics approximation. The coupled-mode model yields accurate results over and
behind the canyon. These results show that although most of the wave energy is
refractively trapped on the offshore rim of the canyon, a small fraction of the
wave energy 'tunnels' across the canyon. Simplifications of the model that
reduce it to the standard and modified mild slope equations also yield good
results, indicating that evanescent modes and high order bottom slope effects
are of minor importance for the energy transformation of waves propagating
across depth contours at large oblique angles
Photoprocesses in protoplanetary disks
Circumstellar disks are exposed to intense ultraviolet radiation from the
young star. In the inner disks, the UV radiation can be enhanced by more than
seven orders of magnitude compared with the average interstellar field,
resulting in a physical and chemical structure that resembles that of a dense
photon-dominated region (PDR). This intense UV field affects the chemistry, the
vertical structure of the disk, and the gas temperature, especially in the
surface layers of the disk. The parameters which make disks different from
traditional PDRs are discussed, including the shape of the UV radiation field,
grain growth, the absence of PAHs, the gas/dust ratio and the presence of inner
holes. New photorates for selected species, including simple ions, are
presented. Also, a summary of available cross sections at Lyman alpha 1216 A is
made. Rates are computed for radiation fields with color temperatures ranging
from 4000 to 30,000 K, and can be applied to a wide variety of astrophysical
regions including exo-planetary atmospheres. The importance of photoprocesses
is illustrated for a number of representative disk models, including disk
models with grain growth and settling.Comment: A website with the final published version and all photodissociation
cross sections and rates can be found at
http://www.strw.leidenuniv.nl/~ewine/phot
Ionic Tuning of Cobaltites at the Nanoscale
Control of materials through custom design of ionic distributions represents
a powerful new approach to develop future technologies ranging from spintronic
logic and memory devices to energy storage. Perovskites have shown particular
promise for ionic devices due to their high ion mobility and sensitivity to
chemical stoichiometry. In this work, we demonstrate a solid-state approach to
control of ionic distributions in (La,Sr)CoO thin films. Depositing a Gd
capping layer on the perovskite film, oxygen is controllably extracted from the
structure, up-to 0.5 O/u.c. throughout the entire 36 nm thickness. Commensurate
with the oxygen extraction, the Co valence state and saturation magnetization
show a smooth continuous variation. In contrast, magnetoresistance measurements
show no-change in the magnetic anisotropy and a rapid increase in the
resistivity over the same range of oxygen stoichiometry. These results suggest
significant phase separation, with metallic ferromagnetic regions and
oxygen-deficient, insulating, non-ferromagnetic regions, forming percolated
networks. Indeed, X-ray diffraction identifies oxygen-vacancy ordering,
including transformation to a brownmillerite crystal structure. The unexpected
transformation to the brownmillerite phase at ambient temperature is further
confirmed by high-resolution scanning transmission electron microscopy which
shows significant structural - and correspondingly chemical - phase separation.
This work demonstrates room-temperature ionic control of magnetism, electrical
resistivity, and crystalline structure in a 36 nm thick film, presenting new
opportunities for ionic devices that leverage multiple material
functionalities
A unified Witten-Reshetikhin-Turaev invariant for integral homology spheres
We construct an invariant J_M of integral homology spheres M with values in a
completion \hat{Z[q]} of the polynomial ring Z[q] such that the evaluation at
each root of unity \zeta gives the the SU(2) Witten-Reshetikhin-Turaev
invariant \tau_\zeta(M) of M at \zeta. Thus J_M unifies all the SU(2)
Witten-Reshetikhin-Turaev invariants of M. As a consequence, \tau_\zeta(M) is
an algebraic integer. Moreover, it follows that \tau_\zeta(M) as a function on
\zeta behaves like an ``analytic function'' defined on the set of roots of
unity. That is, the \tau_\zeta(M) for all roots of unity are determined by a
"Taylor expansion" at any root of unity, and also by the values at infinitely
many roots of unity of prime power orders. In particular, \tau_\zeta(M) for all
roots of unity are determined by the Ohtsuki series, which can be regarded as
the Taylor expansion at q=1.Comment: 66 pages, 8 figure
- …