Circumstellar disks are exposed to intense ultraviolet radiation from the
young star. In the inner disks, the UV radiation can be enhanced by more than
seven orders of magnitude compared with the average interstellar field,
resulting in a physical and chemical structure that resembles that of a dense
photon-dominated region (PDR). This intense UV field affects the chemistry, the
vertical structure of the disk, and the gas temperature, especially in the
surface layers of the disk. The parameters which make disks different from
traditional PDRs are discussed, including the shape of the UV radiation field,
grain growth, the absence of PAHs, the gas/dust ratio and the presence of inner
holes. New photorates for selected species, including simple ions, are
presented. Also, a summary of available cross sections at Lyman alpha 1216 A is
made. Rates are computed for radiation fields with color temperatures ranging
from 4000 to 30,000 K, and can be applied to a wide variety of astrophysical
regions including exo-planetary atmospheres. The importance of photoprocesses
is illustrated for a number of representative disk models, including disk
models with grain growth and settling.Comment: A website with the final published version and all photodissociation
cross sections and rates can be found at
http://www.strw.leidenuniv.nl/~ewine/phot