119 research outputs found

    BAFF production by antigen‐presenting cells provides T cell co‐stimulation

    Get PDF
    The B cell‐activating factor from the tumor necrosis factor family (BAFF) is an important regulator of B cell immunity. Recently, we demonstrated that recombinant BAFF also provides a co‐stimulatory signal to T cells. Here, we studied expression of BAFF in peripheral blood leukocytes and correlated this expression with BAFF T cell co‐stimulatory function. BAFF is produced by antigen‐presenting cells (APC). Blood dendritic cells (DC) as well as DC differentiated in vitro from monocytes or CD34+ stem cells express BAFF mRNA. Exposure to bacterial products further up‐regulates BAFF production in these cells. A low level of BAFF transcription, up‐regulated upon TCR stimulation, was also detected in T cells. Functionally, blockade of endogenous BAFF produced by APC and, to a lesser extent, by T cells inhibits T cell activation. Altogether, this indicates that BAFF may regulate T cell immunity during APC-T cell interactions and as an autocrine factor once T cells have detached from the AP

    Short-term occupations at high elevation during the Middle Paleolithic at Kalavan 2 (Republic of Armenia)

    Get PDF
    The Armenian highlands encompasses rugged and environmentally diverse landscapes and is characterized by a mosaic of distinct ecological niches and large temperature gradients. Strong seasonal fluctuations in resource availability along topographic gradients likely prompted Pleistocene hominin groups to adapt by adjusting their mobility strategies. However, the role that elevated landscapes played in hunter-gatherer settlement systems during the Late Pleistocene (Middle Palaeolithic [MP]) remains poorly understood. At 1640 m above sea level, the MP site of Kalavan 2 (Armenia) is ideally positioned for testing hypotheses involving elevation-dependent seasonal mobility and subsistence strategies. Renewed excavations at Kalavan 2 exposed three main occupation horizons and ten additional low densities lithic and faunal assemblages. The results provide a new chronological, stratigraphical, and paleoenvironmental framework for hominin behaviors between ca. 60 to 45 ka. The evidence presented suggests that the stratified occupations at Kalavan 2 locale were repeated ephemerally most likely related to hunting in a high-elevation within the mountainous steppe landscape

    Fas engagement induces the maturation of dendritic cells (DCs), the release of interleukin (IL)-1beta, and the production of interferon gamma in the absence of IL-12 during DC-T cell cognate interaction: a new role for Fas ligand in inflammatory responses

    Get PDF
    Ligation of the Fas (CD95) receptor leads to an apoptotic death signal in T cells, B cells, and macrophages. However, human CD34(+)-derived dendritic cells (DCs) and mouse DCs, regardless of their maturation state, are not susceptible to Fas-induced cell death. This resistance correlates with the constitutive expression of the Fas-associated death domain-like IL-1beta-converting enzyme (FLICE)-inhibitory protein (FLIP) ligand. We demonstrate a new role of Fas in DC physiology. Engagement of Fas on immature DCs by Fas ligand (FasL) or by anti-Fas antibodies induces the phenotypical and functional maturation of primary DCs. Fas-activated DCs upregulate the expression of the major histocompatibility complex class II, B7, and DC-lysosome-associated membrane protein (DC-LAMP) molecules and secrete proinflammatory cytokines, in particular interleukin (IL)-1beta and tumor necrosis factor alpha. Mature DCs, if exposed to FasL, produce even higher amounts of IL-1beta. Importantly, it is possible to reduce the production of IL-1beta and interferon (IFN)-gamma during DC-T cell interaction by blocking the coupling of Fas-FasL with a Fas competitor. Finally, during cognate DC-T cell recognition, IL-12 (p70) could not be detected at early or late time points, indicating that Fas-induced, IFN-gamma secretion is independent of IL-12

    Short-term occupations at high elevation during the Middle Paleolithic at Kalavan 2 (Republic of Armenia)

    Get PDF
    The Armenian highlands encompasses rugged and environmentally diverse landscapes and is characterized by a mosaic of distinct ecological niches and large temperature gradients. Strong seasonal fluctuations in resource availability along topographic gradients likely prompted Pleistocene hominin groups to adapt by adjusting their mobility strategies. However, the role that elevated landscapes played in hunter-gatherer settlement systems during the Late Pleistocene (Middle Palaeolithic [MP]) remains poorly understood. At 1640 m above sea level, the MP site of Kalavan 2 (Armenia) is ideally positioned for testing hypotheses involving elevation-dependent seasonal mobility and subsistence strategies. Renewed excavations at Kalavan 2 exposed three main occupation horizons and ten additional low densities lithic and faunal assemblages. The results provide a new chronological, stratigraphical, and paleoenvironmental framework for hominin behaviors between ca. 60 to 45 ka. The evidence presented suggests that the stratified occupations at Kalavan 2 locale were repeated ephemerally most likely related to hunting in a high-elevation within the mountainous steppe landscape.info:eu-repo/semantics/publishedVersio

    IGF1 Is a Common Target Gene of Ewing's Sarcoma Fusion Proteins in Mesenchymal Progenitor Cells

    Get PDF
    The EWS-FLI-1 fusion protein is associated with 85-90% of Ewing's sarcoma family tumors (ESFT), the remaining 10-15% of cases expressing chimeric genes encoding EWS or FUS fused to one of several ets transcription factor family members, including ERG-1, FEV, ETV1 and ETV6. ESFT are dependent on insulin-like growth factor-1 (IGF-1) for growth and survival and recent evidence suggests that mesenchymal progenitor/stem cells constitute a candidate ESFT origin. To address the functional relatedness between ESFT-associated fusion proteins, we compared mouse progenitor cell (MPC) permissiveness for EWS-FLI-1, EWS-ERG and FUS-ERG expression and assessed the corresponding expression profile changes. Whereas all MPC isolates tested could stably express EWS-FLI-1, only some sustained stable EWS-ERG expression and none could express FUS-ERG for more than 3-5 days. Only 14% and 4% of the total number of genes that were respectively induced and repressed in MPCs by the three fusion proteins were shared. However, all three fusion proteins, but neither FLI-1 nor ERG-1 alone, activated the IGF1 promoter and induced IGF1 expression. Whereas expression of different ESFT-associated fusion proteins may require distinct cellular microenvironments and induce transcriptome changes of limited similarity, IGF1 induction may provide one common mechanism for their implication in ESFT pathogenesis

    A dissection of SARS‑CoV2 with clinical implications (Review)

    Get PDF
    We are being confronted with the most consequential pandemic since the Spanish flu of 1918‑1920 to the extent that never before have 4 billion people quarantined simultaneously; to address this global challenge we bring to the forefront the options for medical treatment and summarize SARS‑CoV2 structure and functions, immune responses and known treatments. Based on literature and our own experience we propose new interventions, including the use of amiodarone, simvastatin, pioglitazone and curcumin. In mild infections (sore throat, cough) we advocate prompt local treatment for the naso‑pharynx (inhalations; aerosols; nebulizers); for moderate to severe infections we propose a tried‑and‑true treatment: the combination of arginine and ascorbate, administered orally or intravenously. The material is organized in three sections: i) Clinical aspects of COVID‑19; acute respiratory distress syndrome (ARDS); known treatments; ii) Structure and functions of SARS‑CoV2 and proposed antiviral drugs; iii) The combination of arginine‑ascorbate

    Epigenetic Features of Human Mesenchymal Stem Cells Determine Their Permissiveness for Induction of Relevant Transcriptional Changes by SYT-SSX1

    Get PDF
    BACKGROUND: A characteristic SYT-SSX fusion gene resulting from the chromosomal translocation t(X;18)(p11;q11) is detectable in almost all synovial sarcomas, a malignant soft tissue tumor widely believed to originate from as yet unidentified pluripotent stem cells. The resulting fusion protein has no DNA binding motifs but possesses protein-protein interaction domains that are believed to mediate association with chromatin remodeling complexes. Despite recent advances in the identification of molecules that interact with SYT-SSX and with the corresponding wild type SYT and SSX proteins, the mechanisms whereby the SYT-SSX might contribute to neoplastic transformation remain unclear. Epigenetic deregulation has been suggested to be one possible mechanism. METHODOLOGY/PRINCIPAL FINDINGS: We addressed the effect of SYT/SSX expression on the transcriptome of four independent isolates of primary human bone marrow mesenchymal stem cells (hMSC). We observed transcriptional changes similar to the gene expression signature of synovial sarcoma, principally involving genes whose regulation is linked to epigenetic factors, including imprinted genes, genes with transcription start sites within a CpG island and chromatin related genes. Single population analysis revealed hMSC isolate-specific transcriptional changes involving genes that are important for biological functions of stem cells as well as genes that are considered to be molecular markers of synovial sarcoma including IGF2, EPHRINS, and BCL2. Methylation status analysis of sequences at the H19/IGF2 imprinted locus indicated that distinct epigenetic features characterize hMSC populations and condition the transcriptional effects of SYT-SSX expression. CONCLUSIONS/SIGNIFICANCE: Our observations suggest that epigenetic features may define the cellular microenvironment in which SYT-SSX displays its functional effects

    Gene and genon concept: coding versus regulation: A conceptual and information-theoretic analysis of genetic storage and expression in the light of modern molecular biology

    Get PDF
    We analyse here the definition of the gene in order to distinguish, on the basis of modern insight in molecular biology, what the gene is coding for, namely a specific polypeptide, and how its expression is realized and controlled. Before the coding role of the DNA was discovered, a gene was identified with a specific phenotypic trait, from Mendel through Morgan up to Benzer. Subsequently, however, molecular biologists ventured to define a gene at the level of the DNA sequence in terms of coding. As is becoming ever more evident, the relations between information stored at DNA level and functional products are very intricate, and the regulatory aspects are as important and essential as the information coding for products. This approach led, thus, to a conceptual hybrid that confused coding, regulation and functional aspects. In this essay, we develop a definition of the gene that once again starts from the functional aspect. A cellular function can be represented by a polypeptide or an RNA. In the case of the polypeptide, its biochemical identity is determined by the mRNA prior to translation, and that is where we locate the gene. The steps from specific, but possibly separated sequence fragments at DNA level to that final mRNA then can be analysed in terms of regulation. For that purpose, we coin the new term “genon”. In that manner, we can clearly separate product and regulative information while keeping the fundamental relation between coding and function without the need to introduce a conceptual hybrid. In mRNA, the program regulating the expression of a gene is superimposed onto and added to the coding sequence in cis - we call it the genon. The complementary external control of a given mRNA by trans-acting factors is incorporated in its transgenon. A consequence of this definition is that, in eukaryotes, the gene is, in most cases, not yet present at DNA level. Rather, it is assembled by RNA processing, including differential splicing, from various pieces, as steered by the genon. It emerges finally as an uninterrupted nucleic acid sequence at mRNA level just prior to translation, in faithful correspondence with the amino acid sequence to be produced as a polypeptide. After translation, the genon has fulfilled its role and expires. The distinction between the protein coding information as materialised in the final polypeptide and the processing information represented by the genon allows us to set up a new information theoretic scheme. The standard sequence information determined by the genetic code expresses the relation between coding sequence and product. Backward analysis asks from which coding region in the DNA a given polypeptide originates. The (more interesting) forward analysis asks in how many polypeptides of how many different types a given DNA segment is expressed. This concerns the control of the expression process for which we have introduced the genon concept. Thus, the information theoretic analysis can capture the complementary aspects of coding and regulation, of gene and genon
    corecore