59 research outputs found

    Ecological condition of coastal ocean waters along the U.S. Mid-Atlantic Bight: 2006

    Get PDF
    In May 2006, the NOAA National Ocean Service (NOS), in conjunction with the EPA National Health and Environmental Effects Laboratory (NHEERL), conducted an assessment of the status of ecological condition of soft-bottom habitat and overlying waters throughout the mid-Atlantic Bight (MAB) portion of the eastern U.S. continental shelf. The study area encompassed the region from Cape Cod, MA and Nantucket Shoals in the northeast to Cape Hatteras in the south, and was defined using a one nautical mile buffer of the shoreline extended seaward to the shelf break (~100-m depth contour). A total of 50 stations were targeted for sampling using standard methods and indicators applied in prior NOAA coastal studies and EPA’s Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA). A key feature adopted from these studies was the incorporation of a random probabilistic sampling design. Such a design provides a basis for making unbiased statistical estimates of the spatial extent of ecological condition relative to various measured indicators and corresponding thresholds of concern. Indicators included multiple measures of water quality, sediment quality, and biological condition (benthic fauna). Through coordination with the NOAA Fisheries Service/Northeast Fisheries Science Center (NFS/NEFSC), samples of summer flounder (Paralichthys dentatus) also were obtained from 30 winter 2007 bottom-trawl survey stations in overlapping portions of the study area and used for analysis of chemical-contaminant body burdens

    Lessons Learned from 30 Years of Assessing U.S. Coastal Water

    Get PDF
    The 1972 Clean Water Act (CWA) established goals and regulations regarding water quality in the U.S. water resources, including coastal waters. The U.S. Environmental Protection Agency (EPA) was charged with implementing the CWA’s goals and with helping states, and tribes meet their mandate to periodically monitor and assess water quality in their jurisdictions. In response, the EPA initiated the Environmental Monitoring and Assessment Program (EMAP) to develop and test effective methods of assessing water quality in lakes, rivers and streams, and estuaries at state and national scales. EMAP-Estuaries commenced in 1990, devising sampling designs and protocols for estuaries, testing potential indicators, establishing assessment, and reporting methods. Estuarine research and development efforts continued in a series of subsequent programs, each adapting and adopting the best practices of earlier programs, each becoming more national in scale, and each integrating state and tribal participation to a greater degree. Recent surveys have included an assessment of coastal Great Lakes waters. This chapter recounts the history of assessments in coastal waters, emphasizing the current approach while highlighting examples of lessons learned over the 30-year development period leading to the National Coastal Condition Assessment

    Predicting plankton net community production in the Atlantic Ocean

    Get PDF
    We present, test and implement two contrasting models to predict euphotic zone net community production (NCP), which are based on 14C primary production (PO14CP) to NCP relationships over two latitudinal (ca. 30°S–45°N) transects traversing highly productive and oligotrophic provinces of the Atlantic Ocean (NADR, CNRY, BENG, NAST-E, ETRA and SATL, Longhurst et al., 1995 [An estimation of global primary production in the ocean from satellite radiometer data. Journal of Plankton Research 17, 1245–1271]). The two models include similar ranges of PO14CP and community structure, but differ in the relative influence of allochthonous organic matter in the oligotrophic provinces. Both models were used to predict NCP from PO14CP measurements obtained during 11 local and three seasonal studies in the Atlantic, Pacific and Indian Oceans, and from satellite-derived estimates of PO14CP. Comparison of these NCP predictions with concurrent in situ measurements and geochemical estimates of NCP showed that geographic and annual patterns of NCP can only be predicted when the relative trophic importance of local vs. distant processes is similar in both modeled and predicted ecosystems. The system-dependent ability of our models to predict NCP seasonality suggests that trophic-level dynamics are stronger than differences in hydrodynamic regime, taxonomic composition and phytoplankton growth. The regional differences in the predictive power of both models confirm the existence of biogeographic differences in the scale of trophic dynamics, which impede the use of a single generalized equation to estimate global marine plankton NCP. This paper shows the potential of a systematic empirical approach to predict plankton NCP from local and satellite-derived P estimates

    Evaluating triple oxygen isotope estimates of gross primary production at the Hawaii Ocean Time-series and Bermuda Atlantic Time-series Study sites

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): C05012, doi:10.1029/2010JC006856.The triple oxygen isotopic composition of dissolved oxygen (17Δ) is a promising tracer of gross oxygen productivity (P) in the ocean. Recent studies have inferred a high and variable ratio of P to 14C net primary productivity (12–24 h incubations) (e.g., P:NPP(14C) of 5–10) using the 17Δ tracer method, which implies a very low efficiency of phytoplankton growth rates relative to gross photosynthetic rates. We added oxygen isotopes to a one-dimensional mixed layer model to assess the role of physical dynamics in potentially biasing estimates of P using the 17Δ tracer method at the Bermuda Atlantic Time-series Study (BATS) and Hawaii Ocean Time-series (HOT). Model results were compared to multiyear observations at each site. Entrainment of high 17Δ thermocline water into the mixed layer was the largest source of error in estimating P from mixed layer 17Δ. At both BATS and HOT, entrainment bias was significant throughout the year and resulted in an annually averaged overestimate of mixed layer P of 60 to 80%. When the entrainment bias is corrected for, P calculated from observed 17Δ and 14C productivity incubations results in a gross:net productivity ratio of 2.6 (+0.9 −0.8) at BATS. At HOT a gross:net ratio decreasing linearly from 3.0 (+1.0 −0.8) at the surface to 1.4 (+0.6 −0.6) at depth best reproduced observations. In the seasonal thermocline at BATS, however, a significantly higher gross:net ratio or large lateral fluxes of 17Δ must be invoked to explain 17Δ field observations.We acknowledge support from Center for Microbial Oceanography Research and Education (CMORE) (NSF EF-0424599) and NOAA Global Carbon Program (NA 100AR4310093). BL thanks the USA-Israel Binational Science Foundation for supporting his project at BATS.2012-11-0
    • …
    corecore