54 research outputs found
Bone mineral density and risk of heart failure in older adults: The Cardiovascular Health Study
Background
Despite increasing evidence of a common link between bone and heart health, the relationship between bone mineral density (
BMD
) and heart failure (
HF
) risk remains insufficiently studied.
Methods and Results
We investigated whether
BMD
measured by dual‐energy x‐ray absorptiometry was associated with incident
HF
in an older cohort. Cox models were stratified by sex and interactions of
BMD
with race assessed.
BMD
was examined at the total hip and femoral neck separately, both continuously and by World Health Organization categories. Of 1250 participants, 442 (55% women) developed
HF
during the median follow‐up of 10.5 years. In both black and nonblack women, neither total hip nor femoral neck
BMD
was significantly associated with
HF
; there was no significant interaction by race. In black and nonblack men, total hip, but not femoral neck,
BMD
was significantly associated with
HF
, with evidence of an interaction by race. In nonblack men, lower total hip
BMD
was associated with higher
HF
risk (hazard ratio, 1.13 [95% CI, 1.01–1.26] per 0.1 g/cm
2
decrement), whereas in black men, lower total hip
BMD
was associated with lower
HF
risk (hazard ratio, 0.74 [95% CI, 0.59–0.94]). There were no black men with total hip osteoporosis. Among nonblack men, total hip osteoporosis was associated with higher
HF
risk (hazard ratio, 2.83 [95% CI, 1.39–5.74]) compared with normal
BMD
.
Conclusions
Among older adults, lower total hip
BMD
was associated with higher
HF
risk in nonblack men but lower risk in black men, with no evidence of an association in women. Further research is needed to replicate these findings and to study potential underlying pathways.
</jats:sec
Recommended from our members
Fibroblast Growth Factor–23 and Cardiac Structure and Function
Background: Fibroblast growth factor–23 (FGF‐23) is a phosphaturic factor previously associated with left ventricular hypertrophy and systolic dysfunction among individuals with chronic kidney disease. Whether FGF‐23 acts directly to induce left ventricular hypertrophy, potentially independent of its klotho coreceptor, remains uncertain. We investigated associations of FGF‐23 with cardiac structural abnormalities among individuals with a broad range of kidney function and explored potential biological mechanisms using cardiac magnetic resonance imaging and histology in klotho‐null mice, an established model of constitutively elevated FGF‐23. Methods and Results: Among 887 participants with coronary artery disease in the Heart and Soul Study, FGF‐23 was modestly associated with worse left ventricular ejection fraction (−1.0% per standard deviation increase in lnFGF‐23; standard error, 0.4%), but was not associated with the overall prevalence of concentric hypertrophy (odds ratio, 1.5; CI, 0.9 to 2.4) or eccentric hypertrophy (odds ratio, 1.1; CI, 0.9 to 1.3). FGF‐23 was only associated with concentric hypertrophy among individuals with diminished kidney function (eGFR <60 mL/min per 1.73 m2; odds ratio, 2.3; CI, 1.0 to 5.3; P‐interaction=0.28). Comparing klotho‐null with wild‐type mice, null mice did not have greater left ventricular mass (P=0.37) or a lower ejection fraction (P=0.94). Conclusions: Together, our results suggest that FGF‐23 is unlikely to have major effects on cardiovascular structure and function among patients free of substantial chronic kidney disease, and these effects may not be independent of the klotho coreceptor
Endogenous adenine mediates kidney injury in diabetic models and predicts diabetic kidney disease in patients
Diabetic kidney disease (DKD) can lead to end-stage kidney disease (ESKD) and mortality; however, few mechanistic biomarkers are available for high-risk patients, especially those without macroalbuminuria. Urine from participants with diabetes from the Chronic Renal Insufficiency Cohort (CRIC) study, the Singapore Study of Macro-angiopathy and Micro-vascular Reactivity in Type 2 Diabetes (SMART2D), and the American Indian Study determined whether urine adenine/creatinine ratio (UAdCR) could be a mechanistic biomarker for ESKD. ESKD and mortality were associated with the highest UAdCR tertile in the CRIC study and SMART2D. ESKD was associated with the highest UAdCR tertile in patients without macroalbuminuria in the CRIC study, SMART2D, and the American Indian study. Empagliflozin lowered UAdCR in nonmacroalbuminuric participants. Spatial metabolomics localized adenine to kidney pathology, and single-cell transcriptomics identified ribonucleoprotein biogenesis as a top pathway in proximal tubules of patients without macroalbuminuria, implicating mTOR. Adenine stimulated matrix in tubular cells via mTOR and stimulated mTOR in mouse kidneys. A specific inhibitor of adenine production was found to reduce kidney hypertrophy and kidney injury in diabetic mice. We propose that endogenous adenine may be a causative factor in DKD.</p
Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels
Vitamin D is a steroid hormone precursor that is associated with a range of human traits and diseases. Previous GWAS of serum 25-hydroxyvitamin D concentrations have identified four genome-wide significant loci (GC, NADSYN1/DHCR7, CYP2R1, CYP24A1). In this study, we expand the previous SUNLIGHT Consortium GWAS discovery sample size from 16,125 to 79,366 (all European descent). This larger GWAS yields two additional loci harboring genome-wide significant variants (P = 4.7x10(-9) at rs8018720 in SEC23A, and P = 1.9x10(-14) at rs10745742 in AMDHD1). The overall estimate of heritability of 25-hydroxyvitamin D serum concentrations attributable to GWAS common SNPs is 7.5%, with statistically significant loci explaining 38% of this total. Further investigation identifies signal enrichment in immune and hematopoietic tissues, and clustering with autoimmune diseases in cell-type-specific analysis. Larger studies are required to identify additional common SNPs, and to explore the role of rare or structural variants and gene-gene interactions in the heritability of circulating 25-hydroxyvitamin D levels.Peer reviewe
Common Genetic Variants Associate with Serum Phosphorus Concentration
Phosphorus is an essential mineral that maintains cellular energy and mineralizes the skeleton. Because complex actions of ion transporters and regulatory hormones regulate serum phosphorus concentrations, genetic variation may determine interindividual variation in phosphorus metabolism. Here, we report a comprehensive genome-wide association study of serum phosphorus concentration. We evaluated 16,264 participants of European ancestry from the Cardiovascular Heath Study, Atherosclerosis Risk in Communities Study, Framingham Offspring Study, and the Rotterdam Study. We excluded participants with an estimated GFR <45 ml/min per 1.73 m(2) to focus on phosphorus metabolism under normal conditions. We imputed genotypes to approximately 2.5 million single-nucleotide polymorphisms in the HapMap and combined study-specific findings using meta-analysis. We tested top polymorphisms from discovery cohorts in a 5444-person replication sample. Polymorphisms in seven loci with minor allele frequencies 0.08 to 0.49 associate with serum phosphorus concentration (P = 3.5 x 10(-16) to 3.6 x 10(-7)). Three loci were near genes encoding the kidney-specific type IIa sodium phosphate co-transporter (SLC34A1), the calcium-sensing receptor (CASR), and fibroblast growth factor 23 (FGF23), proteins that contribute to phosphorus metabolism. We also identified genes encoding phosphatases, kinases, and phosphodiesterases that have yet-undetermined roles in phosphorus homeostasis. In the replication sample, five of seven top polymorphisms associate with serum phosphorous concentrations (P < 0.05 for each). In conclusion, common genetic variants associate with serum phosphorus in the general population. Further study of the loci identified in this study may help elucidate mechanisms of phosphorus regulation
New genetic loci link adipose and insulin biology to body fat distribution.
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
Association of Oral Calcitriol with Improved Survival in Nondialyzed CKD
Parenteral vitamin D is associated with improved survival among long-term hemodialysis patients. Among nondialyzed patients with chronic kidney disease (CKD), oral activated vitamin D reduces parathyroid hormone levels, but the impact on clinical outcomes is unknown. We evaluated associations of oral calcitriol use with mortality and dialysis dependence in 1418 nondialysis patients with CKD and hyperparathyroidism in the Veterans’ Affairs Consumer Health Information and Performance Sets database. Incident calcitriol users and nonusers were selected on the basis of stages 3 to 4 CKD, hyperparathyroidism, and the absence of hypercalcemia before calcitriol use and then were matched by age and estimated kidney function. During a median follow-up of 1.9 yr, 408 (29%) patients died and 217 (16%) initiated long-term dialysis. After adjustment for demographics; comorbidities; estimated kidney function; medications; and baseline levels of parathyroid hormone, calcium, and phosphorous, oral calcitriol use was associated with a 26% lower risk for death (95% confidence interval 5 to 42% lower; P = 0.016) and a 20% lower risk for death or dialysis (95% confidence interval 1 to 35% lower; P = 0.038). The association of calcitriol with improved survival was not statistically different across baseline parathyroid hormone levels. Calcitriol use was associated with a greater risk for hypercalcemia. In conclusion, oral calcitriol use is associated with lower mortality in nondialysis patients with CKD
- …