526 research outputs found

    Geochemistry of mineral dust in the McMurdo Dry Valleys Region, Antarctica

    Get PDF
    The transport and deposition of windblown materials are major processes in the ice-free areas of polar regions. The deposition of aeolian material provides connectivity within the ecosystems of these regions and is integral in understanding geochemical balances and exchanges between landscape units. We have analyzed materials deposited on glacier and permanent lake-ice surfaces as well as geomorphological features formed by aeolian processes in the largest ice-free area in Antarctica, the McMurdo Dry Valleys (~78 °S) in order to determine the source of this sediment. This presentation will focus on the materials collected from the glacier and lake surfaces. The bulk of sediment movement occurs during foehn events in the austral winter that redistribute material throughout the region. The majority of these samples were sand size (\u3e80 %) by weight. Samples containing the highest silt size were from the glaciers in the eastern portion of the Taylor Valley which is the most downwind position. Major rock-forming elements were analyzed using Standard XRF techniques. The alkali metals were depleted with respect to the Upper Continental Crust (UCC), in both the sand and silt fractions, while the alkaline earths were enriched. The TiO2, Fe2O3 and Al2O3 in the sands are similar to UCC values. The major element geochemistry of the aeolian material suggests that it is a mix of the four major rock types in the Valley itself: PreCambrian basement complex, Beacon Sandstone, Ferrar Dolerite and McMurdo Volcanics. Sr isotopic measurements of the fine grained materials from the glacier surfaces indicate the material is similar to the soils from their respective glacier/lake basins. Nd isotope values of this material lie intermediate to the rock values, indicating multiple sources of the aeolian material. The Sr and Nd isotopic data do not plot within the fields of dust from either Vostok or Dome C ice cores which has been interpreted as coming primarily from South America. All of our data suggest a local source of the majority of aeolian material deposited with Taylor Valle

    An Essential Role for Tumor Necrosis Factor in Natural Killer Cell–mediated Tumor Rejection in the Peritoneum

    Get PDF
    Natural killer (NK) cells are thought to provide the first line of defence against tumors, particularly major histocompatibility complex (MHC) class I− variants. We have confirmed in C57BL/6 (B6) mice lacking perforin that peritoneal growth of MHC class I− RMA-S tumor cells in unprimed mice is controlled by perforin-dependent cytotoxicity mediated by CD3− NK1.1+ cells. Furthermore, we demonstrate that B6 mice lacking tumor necrosis factor (TNF) are also significantly defective in their rejection of RMA-S, despite the fact that RMA-S is insensitive to TNF in vitro and that spleen NK cells from B6 and TNF-deficient mice are equally lytic towards RMA-S. NK cell recruitment into the peritoneum was abrogated in TNF-deficient mice challenged with RMA-S or RM-1, a B6 MHC class I− prostate carcinoma, compared with B6 or perforin-deficient mice. The reduced NK cell migration to the peritoneum of TNF-deficient mice correlated with the defective NK cell response to tumor in these mice. By contrast, a lack of TNF did not affect peptide-specific cytotoxic T lymphocyte–mediated rejection of tumor from the peritoneum of preimmunized mice. Overall, these data show that NK cells delivering perforin are the major effectors of class I− tumor rejection in the peritoneum, and that TNF is specifically critical for their recruitment to the peritoneum

    Ising models on power-law random graphs

    Full text link
    We study a ferromagnetic Ising model on random graphs with a power-law degree distribution and compute the thermodynamic limit of the pressure when the mean degree is finite (degree exponent τ>2\tau>2), for which the random graph has a tree-like structure. For this, we adapt and simplify an analysis by Dembo and Montanari, which assumes finite variance degrees (τ>3\tau>3). We further identify the thermodynamic limits of various physical quantities, such as the magnetization and the internal energy

    Sequential cavity method for computing free energy and surface pressure

    Full text link
    We propose a new method for the problems of computing free energy and surface pressure for various statistical mechanics models on a lattice Zd\Z^d. Our method is based on representing the free energy and surface pressure in terms of certain marginal probabilities in a suitably modified sublattice of Zd\Z^d. Then recent deterministic algorithms for computing marginal probabilities are used to obtain numerical estimates of the quantities of interest. The method works under the assumption of Strong Spatial Mixing (SSP), which is a form of a correlation decay. We illustrate our method for the hard-core and monomer-dimer models, and improve several earlier estimates. For example we show that the exponent of the monomer-dimer coverings of Z3\Z^3 belongs to the interval [0.78595,0.78599][0.78595,0.78599], improving best previously known estimate of (approximately) [0.7850,0.7862][0.7850,0.7862] obtained in \cite{FriedlandPeled},\cite{FriedlandKropLundowMarkstrom}. Moreover, we show that given a target additive error ϵ>0\epsilon>0, the computational effort of our method for these two models is (1/ϵ)O(1)(1/\epsilon)^{O(1)} \emph{both} for free energy and surface pressure. In contrast, prior methods, such as transfer matrix method, require exp((1/ϵ)O(1))\exp\big((1/\epsilon)^{O(1)}\big) computation effort.Comment: 33 pages, 4 figure

    Pattern selection as a nonlinear eigenvalue problem

    Full text link
    A unique pattern selection in the absolutely unstable regime of driven, nonlinear, open-flow systems is reviewed. It has recently been found in numerical simulations of propagating vortex structures occuring in Taylor-Couette and Rayleigh-Benard systems subject to an externally imposed through-flow. Unlike the stationary patterns in systems without through-flow the spatiotemporal structures of propagating vortices are independent of parameter history, initial conditions, and system length. They do, however, depend on the boundary conditions in addition to the driving rate and the through-flow rate. Our analysis of the Ginzburg-Landau amplitude equation elucidates how the pattern selection can be described by a nonlinear eigenvalue problem with the frequency being the eigenvalue. Approaching the border between absolute and convective instability the eigenvalue problem becomes effectively linear and the selection mechanism approaches that of linear front propagation. PACS: 47.54.+r,47.20.Ky,47.32.-y,47.20.FtComment: 18 pages in Postsript format including 5 figures, to appear in: Lecture Notes in Physics, "Nonlinear Physics of Complex Sytems -- Current Status and Future Trends", Eds. J. Parisi, S. C. Mueller, and W. Zimmermann (Springer, Berlin, 1996

    Pattern selection in the absolutely unstable regime as a nonlinear eigenvalue problem: Taylor vortices in axial flow

    Full text link
    A unique pattern selection in the absolutely unstable regime of a driven, nonlinear, open-flow system is analyzed: The spatiotemporal structures of rotationally symmetric vortices that propagate downstream in the annulus of the rotating Taylor-Couette system due to an externally imposed axial through-flow are investigated for two different axial boundary conditions at the in- and outlet. Unlike the stationary patterns in systems without through-flow the spatiotemporal structures of propagating vortices are independent of parameter history, initial conditions, and system's length. They do, however, depend on the axial boundary conditions, the driving rate of the inner cylinder and the through-flow rate. Our analysis of the amplitude equation shows that the pattern selection can be described by a nonlinear eigenvalue problem with the frequency being the eigenvalue. Approaching the border between absolute and convective instability the eigenvalue problem becomes effectively linear and the selection mechanism approaches that one of linear front propagation. PACS:47.54.+r,47.20.Ky,47.32.-y,47.20.FtComment: 15 pages (LateX-file), 8 figures (Postscript

    An international study of the quality of life of adult patients treated with home parenteral nutrition

    Get PDF
    Background & aims: Home parenteral nutrition-quality of life (HPN-QOL©) is a self-assessment tool for the measurement of QOL in patients on HPN. The aims of this study were: to re-assess the basic psychometric properties of the HPN-QOL© in a multinational sample of adult patients; to provide a description of QOL dimensions by short and long HPN treatment duration; to explore clinical factors potentially associated to QOL scores. Methods: Patients (n = 699) from 14 countries completed the HPN-QOL©. The questionnaires were analysed to evaluate data completeness, convergent/discriminant validity and internal-consistency reliability. The association of overall QOL and HPN treatment duration as well as other clinical factors were investigated using multivariable linear regression models. Results: The analysis of the multitrait-scaling and internal consistency indicates a good fit with the questionnaire structure for most items. Item discriminant validity correlation was satisfactory and psychometric evaluation of the HPN-QOL© in the different English, French and Italian language patient sub-groups confirmed psychometric equivalence of the three questionnaire versions. The results of the multivariable linear regression showed that QOL scores were significantly associated with HPN duration (better in long-term), underlying disease (better in Crohn's disease and mesenteric ischaemia) and living status (worse in living alone) and, after adjusting for the other factors, with the number of days of HPN infusion per week. Conclusions: The HPN-QOL©, is a valid tool for measurement of QOL in patients on HPN, to be used in the clinical practice as well as in research

    Worldwide genetic diversity for mineral element concentrations in rice grain

    Get PDF
    With the aim of identifying rice (Oryza spp.) germplasm having enhanced grain nutritional value, the mineral nutrient and trace element concentrations (or ionome) of whole (unmilled) grains from a set of 1763 rice accessions of diverse geographic and genetic origin were evaluated. Seed for analysis of P, Mg, K, S, Ca, As, Cd, Co, Cu, Fe, Mn, Mo, Ni, Rb, Sr, and Zn concentrations by inductively coupled plasma mass spectrometry was produced over 2 yr in Beaumont, TX, under both flooded and unflooded watering regimes. The distributions of all element concentrations analyzed were skewed toward higher concentration. A significant portion of this ionomic variation has a genetic basis (broad sense heritabilities 0.14–0.75), indicating an ability to breed for improved grain concentration of all elements except possibly Ni. Variation in grain elemental concentrations was not strongly associated with plant height, heading time, or grain shape, suggesting these physiological factors are not of primary importance in controlling ionomic variation in rice grain. Accessions high in specific elements were sometimes found to have similar genetic or geographic origins, suggesting they share a heritable mechanism underlying their enhanced ionomes. For example, accessions with high Ca, Mg, or K were more common in the indica than in the japonica subgroup; low As was most common among temperate japonica accessions; and several lines high in Mo originated in Malaysia or adjacent Brunei

    Explorations, Vol. 5, No. 1

    Get PDF
    Articles include: Cover: What Have We Done with Tomorrow? by Leslie C. Hyde, UMCES Extension Agent for Knox-Lincoln Counties. Editorial Reflections, Carole J. Bombard UMCES: an overview Conversation with the Director: Assistant Vice-President Judith Bailey Reaching Out for Teen Awareness, by Theresa M. Ferrari Profile of a Harbormaster, by Carole J. Bombard Minding Maine’s Business, by Mary S. Bowie Family Resource Management: Learning to ease the burden, by Olive Dubord and Doris Cushman Breaking Free and Taking Control: Helen Sawyer’s Story, by Doris Manley Partnership in Conservation: The Josephine Newman Sanctuary, by Nancy Coverstone The Mount Desert Island Health Promotion Project, by Ron Beard Dynamics of Weed Control in Agriculture, by Leigh Morrow From Generation to Generation: An Extension Homemaker Family, by Nadine B. Reimer ICLAD: The Institute for Community Leadership and Development, by Jim Killacky and Deb Burwell Exploding the Cinderella Syndrome: Strengthening Stepfamilies, by Wendy Pollock Integrated Pest Management: Bringing it all together, by Glen Koehler and Jim Dill Addressing the Issues, by Patricia M. Pierson Anti-Bruise: What’s It All About? Maine Potato Harvest Anti-Bruise Program, by Neal D. Hallee H.O.P.E. Addresses Teenage Pregnancy, by Jane M. Kelly Saving Money and the Environment, by Vaughn H. Holyoke Reservoir Tillage in Nonirrigated Potato Production, by Leigh Morrow Managing Pesticide Drift, by James D. Dwyer, Leigh S. Morrow and James F. Dill The St. George River Project — what have we done with tomorrow? Putting Research to Work, by Stephen Belyea The Best Maine Blue: Fresh Pack Blueberries, by Tom DeGomez Maine’s Green Sea Urchin, by Benjamin A. Baxter Interfaces and Cooperation: Wildlife and Fisheries Sampler, by Catherine A. Elliott Extension Responds to the Salmonella Scare, by Nellie Hedstrom and Mahmoud El-Begearm

    Testing Disk-Locking in NGC 2264

    Get PDF
    We test analytic predictions from different models of magnetospheric accretion, which invoke disk-locking, using stellar and accretion parameters derived from models of low resolution optical spectra of 36 T Tauri stars (TTSs) in NGC 2264 (age~3 Myrs). Little evidence is found for models that assume purely dipolar field geometries; however, strong support is found in the data for a modified version of the X-wind model (Shu et al. 1994) which allows for non-dipolar field geometries. The trapped flux concept in the X-wind model is key to making the analytic predictions which appear supported in the data. By extension, our analysis provides support for the outflows predicted by the X-wind as these also originate in the trapped flux region. In addition, we find no support in the data for accretion powered stellar winds from young stars. By comparing the analysis presented here of NGC 2264 with a similar analysis of stars in Taurus (age~1-2 Myr), we find evidence that the equilibrium interaction between the magnetic field and accretion disk in TTS systems evolves as the stars grow older, perhaps as the result of evolution of the stellar magnetic field geometry. We compare the accretion rates we derive with accretion rates based on U-band excess, finding good agreement. In addition, we use our accretion parameters to determine the relationship between accretion and H-beta luminosity, again finding good agreement with previously published results; however, we also find that care must be used when applying this relationship due to strong chromospheric emission in young stars which can lead to erroneous results in some cases.Comment: 66 pages, 15 figures, 13 table
    corecore