A unique pattern selection in the absolutely unstable regime of a driven,
nonlinear, open-flow system is analyzed: The spatiotemporal structures of
rotationally symmetric vortices that propagate downstream in the annulus of the
rotating Taylor-Couette system due to an externally imposed axial through-flow
are investigated for two different axial boundary conditions at the in- and
outlet. Unlike the stationary patterns in systems without through-flow the
spatiotemporal structures of propagating vortices are independent of parameter
history, initial conditions, and system's length. They do, however, depend on
the axial boundary conditions, the driving rate of the inner cylinder and the
through-flow rate. Our analysis of the amplitude equation shows that the
pattern selection can be described by a nonlinear eigenvalue problem with the
frequency being the eigenvalue. Approaching the border between absolute and
convective instability the eigenvalue problem becomes effectively linear and
the selection mechanism approaches that one of linear front propagation.
PACS:47.54.+r,47.20.Ky,47.32.-y,47.20.FtComment: 15 pages (LateX-file), 8 figures (Postscript