106 research outputs found

    Expression profiles of genes involved in TLRs and NLRs signaling pathways of water buffaloes infected with Fasciola gigantica

    Get PDF
    Infection of ruminants and humans with Fasciola gigantica is attracting increasing attention due to its economic impact and public health significance. However, little is known of innate immune responses during F. gigantica infection. Here, we investigated the expression profiles of genes involved in Toll-like receptors (TLRs) and NOD-like receptors (NLRs) signaling pathways in buffaloes infected with 500 F. gigantica metacercariae. Serum, liver and peripheral blood mononuclear cell (PBMC) samples were collected from infected and control buffaloes at 3, 10, 28, and 70 days post infection (dpi). Then, the levels of 12 cytokines in serum samples were evaluated by ELISA. Also, the levels of expression of 42 genes, related to TLRs and NLRs signaling, in liver and PBMCs were determined using custom RT2 Profiler PCR Arrays. At 3 dpi, modest activation of TLR4 and TLR8 and the adaptor protein (TICAM1) was detected. At 10 dpi, NF-ÎșB1 and Interferon Regulatory Factor signaling pathways were upregulated along with activation of TLR1, TLR2, TLR6, TLR10, TRAF6, IRF3, TBK1, CASP1, CD80, and IFNA1 in the liver, and inflammatory response with activated TLR4, TLR9, TICAM1, NF- ÎșB1, NLRP3, CD86, IL-1B, IL-6, and IL-8 in PBMCs. At 28 dpi, there was increase in the levels of cytokines along with induction of NLRP1 and NLRP3 inflammasomes-dependent immune responses in the liver and PBMCs. At 70 dpi, F. gigantica activated TLRs and NLRs, and their downstream interacting molecules. The activation of TLR7/9 signaling (perhaps due to increased B-cell maturation and activation) and upregulation of NLRP3 gene were also detected. These findings indicate that F. gigantica alters the expression of TLRs and NLRs genes to evade host immune defenses. Elucidation of the roles of the downstream effectors interacting with these genes may aid in the development of new interventions to control disease caused by F. gigantica infection

    Defective ATG16L1-mediated removal of IRE1α drives Crohn's disease-like ileitis.

    Get PDF
    ATG16L1T300A^{T300A}, a major risk polymorphism in Crohn's disease (CD), causes impaired autophagy, but it has remained unclear how this predisposes to CD. In this study, we report that mice with Atg16l1 deletion in intestinal epithelial cells (IECs) spontaneously develop transmural ileitis phenocopying ileal CD in an age-dependent manner, driven by the endoplasmic reticulum (ER) stress sensor IRE1α. IRE1α accumulates in Paneth cells of Atg16l1ΔIEC^{ΔIEC} mice, and humans homozygous for ATG16L1T300A^{T300A} exhibit a corresponding increase of IRE1α in intestinal epithelial crypts. In contrast to a protective role of the IRE1ÎČ isoform, hyperactivated IRE1α also drives a similar ileitis developing earlier in life in Atg16l1;Xbp1ΔIEC^{ΔIEC} mice, in which ER stress is induced by deletion of the unfolded protein response transcription factor XBP1. The selective autophagy receptor optineurin interacts with IRE1α, and optineurin deficiency amplifies IRE1α levels during ER stress. Furthermore, although dysbiosis of the ileal microbiota is present in Atg16l1;Xbp1ΔIEC^{ΔIEC} mice as predicted from impaired Paneth cell antimicrobial function, such structural alteration of the microbiota does not trigger ileitis but, rather, aggravates dextran sodium sulfate-induced colitis. Hence, we conclude that defective autophagy in IECs may predispose to CD ileitis via impaired clearance of IRE1α aggregates during ER stress at this site.This study was supported by the European Research Council under the European Community’s Seventh Framework Program (grant FP7/2007-2013)/ERC, agreement no. 260961 to A. Kaser and grant HORIZON2020/ERC, agreement no. 648889 to A. Kaser), the Wellcome Trust (Investigator Award 106260/Z/14/Z to A. Kaser and Principal Research Fellowship 2008/Z/16/Z to D. Ron), the Cambridge Biomedical Research Centre (A. Kaser), a Medical Research Council PhD for clinicians training fellowship (grant MR/N001893/1 to J. Bhattacharyya), fellowships from the European Crohn’s and Colitis Organization (M. Tschurtschenthaler and T.E. Adolph), the Research Training Group Genes, Environment, and Inflammation supported by the Deutsche Forschungsgemeinschaft (grant RTG 1743/1 to P. Rosenstiel), the SFB877 subproject B9 and CLVIII ExC 306 Inflammation at Interfaces (P. Rosenstiel), and the National Institutes of Health (grants DK044319, DK051362, DK053056, and DK088199 to the Harvard Digestive Diseases Center and grant DK0034854 to R.S. Blumberg)

    Type IV secretion in Gram-negative and Gram-positive bacteria

    Get PDF
    Type IV secretion systems (T4SSs) are versatile multiprotein nanomachines spanning the entire cell envelope in Gram‐negative and Gram‐positive bacteria. They play important roles through the contact‐dependent secretion of effector molecules into eukaryotic hosts and conjugative transfer of mobile DNA elements as well as contact‐independent exchange of DNA with the extracellular milieu. In the last few years, many details on the molecular mechanisms of T4SSs have been elucidated. Exciting structures of T4SS complexes from Escherichia coli plasmids R388 and pKM101, Helicobacter pylori and Legionella pneumophila have been solved. The structure of the F‐pilus was also reported and surprisingly revealed a filament composed of pilin subunits in 1:1 stoichiometry with phospholipid molecules. Many new T4SSs have been identified and characterized, underscoring the structural and functional diversity of this secretion superfamily. Complex regulatory circuits also have been shown to control T4SS machine production in response to host cell physiological status or a quorum of bacterial recipient cells in the vicinity. Here, we summarize recent advances in our knowledge of ‘paradigmatic’ and emerging systems, and further explore how new basic insights are aiding in the design of strategies aimed at suppressing T4SS functions in bacterial infections and spread of antimicrobial resistances

    NOD1 and NOD2: Beyond Peptidoglycan Sensing.

    No full text
    NOD1 and NOD2 are pattern recognition receptors of the innate immune system with well-established roles in sensing fragments of bacterial peptidoglycan. In addition to their role as microbial sensors, recent evidence indicates that nucleotide-binding oligomerization domains (NODs) can also recognize a broader array of danger signals. Indeed, recent work has expanded the roles of NOD1 and NOD2 to encompass not only sensing of infections with viruses and parasites but also perceiving perturbations of cellular processes such as regulation of the actin cytoskeleton and maintenance of endoplasmic reticulum homeostasis. This review will comment on recent progress and point out emerging questions in these areas

    NOD1 and NOD2: New Functions Linking Endoplasmic Reticulum Stress and Inflammation.

    No full text
    Although viruses have long been known to subvert the endoplasmic reticulum (ER) for their replication, recent work has shown that this strategy is also used by bacterial pathogens and parasites to promote their intracellular growth. The ensuing disruption of cellular processes triggers a condition known as ER stress, which activates the host cell's unfolded protein response (UPR) to restore homeostasis. Recent work has linked the UPR, in particular the arm of this response that depends on the ER-resident sensor IRE1, to innate immunity and inflammation. Surprisingly, two intracellular innate immune receptors, NOD1 and NOD2, previously shown to sense bacterial peptidoglycan, were found to transduce ER stress signals to elicit inflammation. Given the known roles of both ER stress and NOD2 in chronic inflammatory diseases, including inflammatory bowel disease and type 2 diabetes, this new link has important implications for understanding the basis for these pathologies

    NOD1 and NOD2: New Functions Linking Endoplasmic Reticulum Stress and Inflammation

    No full text
    Although viruses have long been known to subvert the endoplasmic reticulum (ER) for their replication, recent work has shown that this strategy is also used by bacterial pathogens and parasites to promote their intracellular growth. The ensuing disruption of cellular processes triggers a condition known as ER stress, which activates the host cell's unfolded protein response (UPR) to restore homeostasis. Recent work has linked the UPR, in particular the arm of this response that depends on the ER-resident sensor IRE1, to innate immunity and inflammation. Surprisingly, two intracellular innate immune receptors, NOD1 and NOD2, previously shown to sense bacterial peptidoglycan, were found to transduce ER stress signals to elicit inflammation. Given the known roles of both ER stress and NOD2 in chronic inflammatory diseases, including inflammatory bowel disease and type 2 diabetes, this new link has important implications for understanding the basis for these pathologies
    • 

    corecore