6,255 research outputs found
Characterization of low loss microstrip resonators as a building block for circuit QED in a 3D waveguide
Here we present the microwave characterization of microstrip resonators made
from aluminum and niobium inside a 3D microwave waveguide. In the low
temperature, low power limit internal quality factors of up to one million were
reached. We found a good agreement to models predicting conductive losses and
losses to two level systems for increasing temperature. The setup presented
here is appealing for testing materials and structures, as it is free of wire
bonds and offers a well controlled microwave environment. In combination with
transmon qubits, these resonators serve as a building block for a novel circuit
QED architecture inside a rectangular waveguide
coupling determined beyond the chiral limit
Within the conventional QCD sum rules, we calculate the coupling
constant, , beyond the chiral limit using two-point correlation
function with a pion. We consider the Dirac structure, , at
order, which has clear dependence on the PS and PV coupling schemes
for the pion-nucleon interactions. For a consistent treatment of the sum rule,
we include the linear terms in quark mass as they constitute the same chiral
order as . Using the PS coupling scheme for the pion-nucleon
interaction, we obtain , which is very close to the
empirical coupling. This demonstrates that going beyond the chiral
limit is crucial in determining the coupling and the pseudoscalar coupling
scheme is preferable from the QCD point of view.Comment: 8 pages, revtex, some errors are corrected, substantially revise
49Cr: Towards full spectroscopy up to 4 MeV
The nucleus 49Cr has been studied analysing gamma-gamma coincidences in the
reaction 46Ti(alpha,n)49Cr at the bombarding energy of 12 MeV. The level scheme
has been greatly extended at low excitation energy and several new lifetimes
have been determined by means of the Doppler Shift Attenuation Method.
Shell model calculations in the full pf configuration space reproduce well
negative-parity levels. Satisfactory agreement is obtained for positive parity
levels by extending the configuration space to include a nucleon-hole either in
the 1d3/2 or in the 2s1/2 orbitals.
A nearly one-to-one correspondence is found between experimental and
theoretical levels up to an excitation energy of 4 MeV.
Experimental data and shell model calculations are interpreted in terms of
the Nilsson diagram and the particle-rotor model, showing the strongly coupled
nature of the bands in this prolate nucleus. Nine values of K(pi) are proposed
for the levels observed in this experiment.
As a by-result it is shown that the values of the experimental magnetic
moments in 1f7/2 nuclei are well reproduced without quenching the nucleon
g-factors.Comment: 13 pages, 8 figure
Mid-J CO emission from the Orion BN/KL explosive outflow
High spatial resolution low-J 12CO observations have shown that the
wide-angle outflow seen in the Orion BN/KL region correlates with the famous H2
fingers. Recently, high-resolution large-scale mappings of mid- and higher-J CO
emissions have been reported toward the Orion molecular cloud 1 core region
using the APEX telescope. Therefore, it is of interest to investigate this
outflow in the higher-J 12CO emission, which is likely excited by shocks. The
observations were carried out using the dual-color heterodyne array CHAMP+ on
the APEX telescope. The images of the Orion BN/KL region were obtained in the
12CO J=6-5 and J=7-6 transitions with angular resolutions of 8.6 and 7.4
arcsec, respectively. The results show a good agreement between our higher-J
12CO emission and SMA low-J 12CO data, which indicates that this wide-angle
outflow in Orion BN/KL is likely the result of an explosive event that is
related to the runaway objects from a dynamically decayed multiple system. From
our observations, we estimate that the kinetic energy of this explosive outflow
is about 1-2x10^47 erg. In addition, a scenario has been proposed where part of
the outflow is decelerated and absorbed in the cloud to explain the lack of CO
bullets in the southern part of BN/KL, which in turn induces the methanol
masers seen in this region.Comment: 5 pages, 4 figure
Submillimeter imaging spectroscopy of the Horsehead nebula
We present ~15 arcsecond resolution single-dish imaging of the Horsehead nebula in the CI (1-0) and CO (4-3) lines, carried out using the CHAMP array at the Caltech Submillimeter Observatory (CSO). The data are used together with supporting observations of the (2-1) transitions of the CO isotopologues to determine the physical conditions in the atomic and molecular gas via Photon Dominated Region (PDR) modeling. The CO (4-3)/(2-1) line ratio, which is an excellent tracer of the direction of the incoming UV photons, increases at the western and northern edges of the nebula, confirming that the illumination is provided mostly by the stars Ď and ÚŻ Orionis. The observed line intensities are consistent with PDR models with an H nuclei volume density of ~3- 7 x 10^4 cm^(-3). The models predict a kinetic temperature of ~12 K and a C^(18)O fractional abundance with respect to H atoms of 2.4 x 10^(-7) in the shielded region, which in turn imply a total molecular mass of ~24 M_â in the C^(18)O filament. The outer halo, devoid of C^(18)O, but traced by the CI emission has a comparable density and contributes additional ~13 M_â of material, resulting in an upper limit of ~37 M_â for the total molecular mass of the nebula
Low-lying bands with different quadrupole deformation in 133 Nd
The mean lifetimes of ten states in excited via the reaction at MeV were measured by means of the recoil-distance Doppler-shift method. The spectra obtained by setting a gate on the shifted component of a transition directly feeding the level of interest were analyzed within the framework of the differential decay-curve method. The intraband transition strengths are compared to calculations within the particle plus rotor model which reveal differences in the quadrupole deformations \ensuremath{\epsilon} and \ensuremath{\gamma} of the bands studied
An NLO QCD analysis of inclusive cross-section and jet-production data from the ZEUS experiment
The ZEUS inclusive differential cross-section data from HERA, for charged and
neutral current processes taken with e+ and e- beams, together with
differential cross-section data on inclusive jet production in e+ p scattering
and dijet production in \gamma p scattering, have been used in a new NLO QCD
analysis to extract the parton distribution functions of the proton. The input
of jet data constrains the gluon and allows an accurate extraction of
\alpha_s(M_Z) at NLO;
\alpha_s(M_Z) = 0.1183 \pm 0.0028(exp.) \pm 0.0008(model)
An additional uncertainty from the choice of scales is estimated as \pm
0.005. This is the first extraction of \alpha_s(M_Z) from HERA data alone.Comment: 37 pages, 14 figures, to be submitted to EPJC. PDFs available at
http://durpdg.dur.ac.uk/hepdata in LHAPDFv
Measurements of branching fraction ratios and CP-asymmetries in suppressed B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^- decays
We report the first reconstruction in hadron collisions of the suppressed
decays B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^-, sensitive to the
CKM phase gamma, using data from 7 fb^-1 of integrated luminosity collected by
the CDF II detector at the Tevatron collider. We reconstruct a signal for the
B^- -> D(-> K^+ pi^-)K^- suppressed mode with a significance of 3.2 standard
deviations, and measure the ratios of the suppressed to favored branching
fractions R(K) = [22.0 \pm 8.6(stat)\pm 2.6(syst)]\times 10^-3, R^+(K) =
[42.6\pm 13.7(stat)\pm 2.8(syst)]\times 10^-3, R^-(K)= [3.8\pm 10.3(stat)\pm
2.7(syst]\times 10^-3, as well as the direct CP-violating asymmetry A(K) =
-0.82\pm 0.44(stat)\pm 0.09(syst) of this mode. Corresponding quantities for
B^- -> D(-> K^+ pi^-)pi^- decay are also reported.Comment: 8 pages, 1 figure, accepted by Phys.Rev.D Rapid Communications for
Publicatio
Measurement of inclusive D*+- and associated dijet cross sections in photoproduction at HERA
Inclusive photoproduction of D*+- mesons has been measured for photon-proton
centre-of-mass energies in the range 130 < W < 280 GeV and a photon virtuality
Q^2 < 1 GeV^2. The data sample used corresponds to an integrated luminosity of
37 pb^-1. Total and differential cross sections as functions of the D*
transverse momentum and pseudorapidity are presented in restricted kinematical
regions and the data are compared with next-to-leading order (NLO) perturbative
QCD calculations using the "massive charm" and "massless charm" schemes. The
measured cross sections are generally above the NLO calculations, in particular
in the forward (proton) direction. The large data sample also allows the study
of dijet production associated with charm. A significant resolved as well as a
direct photon component contribute to the cross section. Leading order QCD
Monte Carlo calculations indicate that the resolved contribution arises from a
significant charm component in the photon. A massive charm NLO parton level
calculation yields lower cross sections compared to the measured results in a
kinematic region where the resolved photon contribution is significant.Comment: 32 pages including 6 figure
Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV
A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay
channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7
TeV is presented. The data were collected at the LHC, with the CMS detector,
and correspond to an integrated luminosity of 4.6 inverse femtobarns. No
significant excess is observed above the background expectation, and upper
limits are set on the Higgs boson production cross section. The presence of the
standard model Higgs boson with a mass in the 270-440 GeV range is excluded at
95% confidence level.Comment: Submitted to JHE
- âŚ