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Abstract

Within the conventional QCD sum rules, we calculate the πNN coupling

constant, gπN , beyond the chiral limit using two-point correlation function

with a pion. We consider the Dirac structure, iγ5, at m2
π order, which has

clear dependence on the PS and PV coupling schemes for the pion-nucleon

interactions. For a consistent treatment of the sum rule, we include the linear

terms in quark mass as they constitute the same chiral order as m2
π. Using the

PS coupling scheme for the pion-nucleon interaction, we obtain gπN = 13.3±
1.2, which is very close to the empirical πNN coupling. This demonstrates

that going beyond the chiral limit is crucial in determining the coupling and

the pseudoscalar coupling scheme is preferable from the QCD point of view.
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QCD sum rule [1] is a framework which connects hadronic parameters with QCD pa-
rameters. In this framework, a correlation function is introduced in terms of interpolating
fields constructed from quark and gluon fields. The interpolating field is constructed so
that its coupling to the hadron of concern is expected to be strong while its couplings to
other higher resonances are hoped to be small. Then the correlator is calculated by Wilson’s
operator product expansion (OPE) in the deep Euclidean region (q2 = −∞) and matched
with the phenomenological “ansatz” to extract the hadron’s information in terms of QCD
parameters.

One interesting quantity to be determined is the pion-nucleon coupling constant, gπN . As
the coupling is empirically well-known, successful reproduction of this quantity may provide a
solid framework to determine other meson-baryon couplings as well as a better understanding
of nonperturbative nature of hadrons. For this direction, the two-point correlation function
for the nucleon interpolating field JN ,

Π(q, p) = i
∫

d4xeiq·x〈0|T [JN(x)J̄N(0)]|π(p)〉 , (1)

may be useful and it is often used in calculating gπN [2–6]. Alternative approach is to
consider the correlation function without pion but in an external axial field [7]. This pro-
vides the nucleon axial charge, gA, which can be converted to gπN with the help of the
Goldberger-Treiman relation. Our interest in this work is to provide a reasonable value of
gπN using Eq. (1) because its extension to other meson-baryon couplings seems to be more
straightforward. Further advantage in using Eq. (1) is to provide a criterion for the PS-PV
coupling schemes for the pion-nucleon interaction as will be discussed below.

The correlation function, Eq. (1), contains various independent Dirac structures, each of
which can be in principle used to calculate gπN . For example, Ref. [4] uses the γ5 6p structure
while Ref. [3] uses the iγ5 structure in the soft-pion limit. In the recent calculations [5,6], we
proposed to use the γ5σµν structure in studying gπN as this structure is independent of the
pseudoscalar (PS) and pseudovector (PV) coupling schemes employed in the phenomeno-
logical side. This sum rule contains very small contribution from the transition N → N∗,
and the result is insensitive to the continuum threshold. Therefore, this structure provides
a value of gπN independent of the coupling schemes. However, the result from this Dirac
structure, gπN ∼ 10, is not quite satisfactory. Certainly a further improvement of this sum
rule may be needed for the future extension to other SU(3) mesons.

Various improvements can be sought for. These may include a question related to the
use of Ioffe’s nucleon current for the correlator, higher order corrections in the OPE, or
corrections associated with the chiral limit. The last possibility for the improvement is
interesting because gπN from the γ5σµν sum rule is rather close to the one in the chiral limit
than its empirical value. In Ref. [5], the calculation is performed beyond the soft-pion limit
by taking the leading order of the pion momentum pµ, but for the rest of the correlator the
chiral limit, p2 = m2

π = 0, is taken. Thus, it is not clear whether the calculation is performed
beyond the chiral limit and this may cause the discrepancy with the empirical gπN .

In this paper, we pursue an improvement by presenting a QCD sum rule calculation
beyond the chiral limit. Specifically, we consider the Dirac structure, iγ5, at the order,
p2 = m2

π. The sum rule for the structure, iγ5, is, first of all, technically less involved
when the calculation is done beyond the chiral limit. Secondly, even beyond the chiral
limit, this structure is clearly PS-PV coupling-scheme dependent. Therefore, the successful
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reproduction of the empirical value for gπN may provide an important QCD constraint for
the pion-nucleon interaction type.

To see the coupling scheme dependence more clearly, we use the PS and PV Lagrangians

Lps = gπN ψ̄iγ5τ · πψ ; Lpv =
gπN
2m

ψ̄γ5γµτ · ∂µπψ , (2)

in constructing the phenomenological side of the correlator, Eq. (1). Then the correlator is
expanded in terms of the pion momentum pµ. Using the PS Lagrangian, we obtain for the
iγ5 structure [6],

gπNλ
2

[

− 1

q2 −m2
− p · q

(q2 −m2)2
+

p2

(q2 −m2)2

]

+ · · · . (3)

Here λ is coupling of JN to the physical nucleon, m is nucleon mass. Note that the first term
is the phenomenological part of the sum rule in the soft-pion limit [3]. The second term
containing p · q is not the same chiral order as m2

π. Thus at p
2 = m2

π, the phenomenological
correlator takes the form,

m2

π

gπNλ
2

(q2 −m2)2
+ · · · . (4)

The ellipses indicate the contribution when JN couples to higher resonances. This includes
the continuum contribution whose spectral density is usually parameterized by a step func-
tion with a certain threshold Sπ, and single pole terms associated with the transitions,
N → N∗ [8].

On the other hand, with the PV Lagrangian, the similar recipe yields the correlator at
the order m2

π,

m2
π

2

gπNλ
2

(q2 −m2)2
+ · · · , (5)

Note that in the PV case, there is no soft-pion limit as it should be. This PV correlator
contains an additional residue of 1/2 compared to the PS correlator. Thus, gπN determined
from the PV coupling scheme is twice of the one from the PS coupling scheme.

In the construction of this sum rule, the pion mass, m2
π, will be taken out as an overall

factor. The rest correlator will be used to construct the sum rule. Then, a consistent treat-
ment should be made also in the OPE side. Namely, from the Gell-Mann−Oakes−Renner
relation,

− 2mq〈q̄q〉 = m2

πf
2

π , (6)

the vanishing limit of the pion mass, m2
π → 0, is consistent with the chiral limit, mq → 0.

Therefore, for the sum rule with m2
π taken out as an overall factor, the quark-mass term

should be kept in the OPE side. Clearly, this aspect has been overlooked in our previous
calculations [6] and needs to be implemented.

To construct the OPE side, we consider the correlation function with a charged pion,

Π(q, p) = i
∫

d4xeiq·x〈0|T [Jp(x)J̄n(0)]|π+(p)〉 . (7)
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Here Jp is the proton interpolating field suggested by Ioffe [8],

Jp = ǫabc[u
T
aCγµub]γ5γ

µdc , (8)

and the neutron interpolating field Jn is obtained by replacing (u, d) → (d, u). In the OPE,
we keep the quark-antiquark component of the pion wave function and use the vacuum
saturation hypothesis to factor out higher dimensional operators in terms of the pion wave
function and the vacuum expectation value.

For the sum rule with the iγ5 structure, we replace the quark-antiquark component of
the pion wave function as follows,

〈0|uαa(x)d̄βa′(0)|π+(p)〉 → δaa′

12
(iγ5)

αβ〈0|d̄(0)iγ5u(x)|π+(p)〉 . (9)

At p2 = m2
π order, the matrix element in the left-hand side is replaced as [9]

〈0|d̄(0)iγ5u(x)|π+(p)〉 → −m2

π

√
2〈q̄q〉
3fπ

, (10)

where the overall normalization of the pion wave function at the second moment has been
used. Another contribution at m2

π order is obtained by moving a gluon tensor from a quark
propagator into the quark-antiquark component. This constitutes the three particle wave
function whose overall normalization is relatively well-known. From Ref. [9],

〈0|GA
µν(0)u

α
a (x)d̄

β
b (0)|π+(p)〉 = −if3π

32
m2

πt
A
ab(γ5σµν)

αβ , (11)

where 1 f3π = 0.003 GeV2 and the color matrices tA are related to the Gell-Mann matrices
via tA = λA/2.

As we have discussed, the linear terms in quark mass should be kept in the OPE for the
sum rule at m2

π order. The quark-mass dependent terms can be obtained by first taking
the limit, pµ → 0, in the quark-antiquark component, Eq. (9), while picking up linear terms
in quark-mass from the other part of the correlator 2. It turns out that the condensates,
mq〈q̄q〉 and mq〈q̄gsσ · Gq〉 ≡ mqm

2
0〈q̄q〉, contribute to the OPE of the iγ5 structure. The

Gell-Mann−Oakes−Renner relation is used to convert mq〈q̄q〉 to −m2
πf

2
π/2. Therefore, the

quark-mass terms give additional contributions to the sum rule at m2
π order.

Collecting all the OPE terms contributing to the iγ5 structure at m2
π order, the OPE

side (after taking out the isospin factor
√
2 as well as m2

π as overall factors) takes the form

1Its value is uncertain by an error ±0.0005 GeV2 depending on the renomalization scale [7].

However, the contribution from Eq. (11) is small in our sum rule as we will discuss below. Thus,

this error in f3π is negligible in our sum rule.

2For complete quark propagator including the linear order in quark mass, see Ref. [10]. Note that

gluonic tensor used there has opposite sign of that in Ref. [2]. This is just a matter of how one

defines the covariant derivative but, in practice, this sign difference should be carefully noted.
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ln(−q2)
[

〈q̄q〉
12π2fπ

+
3f3π

4
√
2π2

]

+ fπ〈q̄q〉
1

q2
+

1

72fπ
〈q̄q〉

〈

αs

π
G2

〉

1

q4
− 1

3
m2

0fπ〈q̄q〉
1

q4
(12)

Note, we use the pion decay constant fπ = 0.093 GeV here. The second and fourth terms
come from the quark-mass dependent terms. It turns out that these are important in
stabilizing the sum rule, justifying the inclusion of quark-mass terms in the OPE. The second
term in the bracket comes from gluonic contribution combined with the quark-antiquark
component, Eq. (11). Its contribution is about 4 times smaller than the first term in the
bracket. Except for this term, all others contain the quark condensate. This feature provides
very stable results when this sum rule combined with the nucleon chiral-odd sum rule.

We now match the OPE with its pseudoscalar phenomenological part, Eq.(4). To saturate
the correlator with the low-lying resonance, we perform Borel transformation and obtain,

gπNλ
2e−m2/M2

[1 + AM2] =

−M4E0(xπ)

[

〈q̄q〉
12π2fπ

+
3f3π

4
√
2π2

]

− fπ〈q̄q〉M2 +
1

72fπ
〈q̄q〉

〈

αs

π
G2

〉

− 1

3
m2

0fπ〈q̄q〉 . (13)

The contribution from N → N∗ [8] is denoted by the unknown constant, A. The continuum
contribution is included in the factor, En(xπ ≡ Sπ/M

2) = 1 − (1 + xπ + · · · + xnπ/n!)e
−xπ

where Sπ is the continuum threshold, which we take 2.07 GeV2 corresponding to the Roper
resonance. In our analysis, we take standard values for the QCD parameters,

〈q̄q〉 = −(0.23 GeV)3 ;
〈

αs

π
G2

〉

= (0.33 GeV)4 ; m2

0 = 0.8 GeV2 . (14)

In figure 1, we plot gπNλ
2[1 + AM2] as a function of the Borel mass M2. To see the

sensitivity to the continuum threshold, we also plot the curve with Sπ = 2.57 GeV2, which
is very close to the one with Sπ = 2.07 GeV2. The two curves differs only by 2% at M2 = 1
GeV2, indicating that our sum rule is insensitive to the continuum threshold. The highest
dimensional term in the OPE contributes appreciably for M2 ≤ 0.6 GeV2, more than 20 %
of the total OPE. Thus, the truncated OPE therefore will be reliable for M2 ≥ 0.6 GeV2.
The slope of the curve for M2 ≥ 0.6 GeV2 is small, indicating that the unknown single pole
term denoted by A is small.

To eliminate the dependence on the unknown strength λ in our sum rule, we divide
Eq. (13) by the nucleon chiral-odd sum rule and obtain,

gπN
m

[1 + AM2] =
{

M4E0(xπ)

[

1

3fπ
+

3f3π

〈q̄q〉
√
2

]

+
8π2fπ
3

M2 − π2

18fπ

〈

αs

π
G2

〉

+
4π2

3
m2

0fπ

}

×
{

M4E1(xN)−
π2

6

〈

αs

π
G2

〉

}

−1

, (15)

where xN = SN/M
2 with SN being the continuum threshold for the nucleon sum rule. Note

that the dependence on the quark condensate has been mostly canceled in the ratio, leaving
a slight dependence in the term f3π. Additional source of the uncertainty associated with the
gluon condensate is also very small as it is canceled in the ratio. One important uncertainty
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comes from the parameter m2
0, which however appears only in the highest dimensional OPE.

Therefore, its contribution will be suppressed in the Borel window chosen. The error from
QCD parameters is estimated numerically and it is about ±1.2 in determining gπN . For the
continuum threshold in the nucleon sum rule, we take SN = Sπ. This choice is made because
at the chiral limit the iγ5 sum rule is equivalent to the nucleon chiral-odd sum rule; these
two are related by chiral rotation [4]. This equivalence provides the Goldberger-Treiman
relation with gA = 1 [3]. This choice for the continuum is also supported from modeling
higher resonance contributions to the correlator based on effective models [6]. We determine
gπN and A by fitting the RHS with a straight line within the appropriately chosen Borel
window. The dependence on the Borel mass is mainly driven by the nucleon sum rule.
The maximum Borel mass is determined by restricting the the continuum contribution from
the nucleon sum rule while the minimum Borel mass is obtained by restricting the highest
OPE term from the πNN sum rule. These gives the common window of the two sum
rules, 0.65 ≤ M2 ≤ 1.24. By fitting the RHS with a straight line within this window, we
obtain gπN = 13.3 ± 1.2, where the quoted error comes from the QCD parameters. This is
remarkably close to its empirical value of 13.4.

In getting this result, it is essential to go beyond the chiral limit. Since the empirical gπN
should include the chiral corrections, it is indeed natural to go beyond the chiral limit in
the determination of gπN . One important observation made in this work is that the quark-
mass dependent terms shouldn’t be treated separately from the sum rule proportional to
m2

π as they constitute the same chiral order via the Gell-Mann−Oakes−Renner relation.
The quark-mass terms are found to be very important in stabilizing the sum rule. Our
findings, remarkable agreement with the empirical value and the insensitiveness on the QCD
parameters, may provide a solid ground in constructing sum rules for other meson-baryon
couplings. The predictive power of QCD sum rules can be substantially enhanced. One
application of our sum rule to the ηNN coupling is in progress [11]. Furthermore, our result
provides a QCD constraint for the type of the pion-nucleon coupling. The value of gπN
quoted above is based on the PS coupling scheme. With the PV coupling scheme, we would
have obtained the value twice of the quoted above. [See Eq.(5).] Any error in our approach
can not produce the value of gπN consistent with the PV coupling scheme. Therefore our
work suggests that the PS scheme is preferable for the pion-nucleon coupling from the QCD
point of view.

In summary, we have developed a QCD sum rule for πNN coupling beyond the chiral
limit for the first time. The quark-mass dependent terms are combined to the sum rule pro-
portional to m2

π and they are very important in this sum rule. A remarkable agreement with
the empirical value of gπN was obtained with very small errors. This sum rule provides the
first QCD constraint for the type of the pion-nucleon coupling, in favor of the pseudoscalar
coupling.
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FIGURES

FIG. 1. The Borel mass dependence of gπNλ2[1 +AM2]. The solid line is for Sπ = 2.07 GeV2

and the dashed line is for Sπ = 2.57 GeV2. The two curves are differed only by 2% at M2 = 1

GeV2.
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