50 research outputs found
Far-from-equilibrium quantum many-body dynamics
The theory of real-time quantum many-body dynamics as put forward in Ref.
[arXiv:0710.4627] is evaluated in detail. The formulation is based on a
generating functional of correlation functions where the Keldysh contour is
closed at a given time. Extending the Keldysh contour from this time to a later
time leads to a dynamic flow of the generating functional. This flow describes
the dynamics of the system and has an explicit causal structure. In the present
work it is evaluated within a vertex expansion of the effective action leading
to time evolution equations for Green functions. These equations are applicable
for strongly interacting systems as well as for studying the late-time
behaviour of nonequilibrium time evolution. For the specific case of a bosonic
N-component phi^4 theory with contact interactions an s-channel truncation is
identified to yield equations identical to those derived from the 2PI effective
action in next-to-leading order of a 1/N expansion. The presented approach
allows to directly obtain non-perturbative dynamic equations beyond the widely
used 2PI approximations.Comment: 20 pp., 6 figs; submitted version with added references and typos
corrected
Large-scale genome-wide association studies and meta-analyses of longitudinal change in adult lung function.
BACKGROUND: Genome-wide association studies (GWAS) have identified numerous loci influencing cross-sectional lung function, but less is known about genes influencing longitudinal change in lung function.
METHODS: We performed GWAS of the rate of change in forced expiratory volume in the first second (FEV1) in 14 longitudinal, population-based cohort studies comprising 27,249 adults of European ancestry using linear mixed effects model and combined cohort-specific results using fixed effect meta-analysis to identify novel genetic loci associated with longitudinal change in lung function. Gene expression analyses were subsequently performed for identified genetic loci. As a secondary aim, we estimated the mean rate of decline in FEV1 by smoking pattern, irrespective of genotypes, across these 14 studies using meta-analysis.
RESULTS: The overall meta-analysis produced suggestive evidence for association at the novel IL16/STARD5/TMC3 locus on chromosome 15 (P = 5.71 × 10(-7)). In addition, meta-analysis using the five cohorts with ≥3 FEV1 measurements per participant identified the novel ME3 locus on chromosome 11 (P = 2.18 × 10(-8)) at genome-wide significance. Neither locus was associated with FEV1 decline in two additional cohort studies. We confirmed gene expression of IL16, STARD5, and ME3 in multiple lung tissues. Publicly available microarray data confirmed differential expression of all three genes in lung samples from COPD patients compared with controls. Irrespective of genotypes, the combined estimate for FEV1 decline was 26.9, 29.2 and 35.7 mL/year in never, former, and persistent smokers, respectively.
CONCLUSIONS: In this large-scale GWAS, we identified two novel genetic loci in association with the rate of change in FEV1 that harbor candidate genes with biologically plausible functional links to lung function
Rare and low-frequency exonic variants and gene-by-smoking interactions in pulmonary function
Genome-wide association studies have identified numerous common genetic variants associated with spirometric measures of pulmonary function, including forced expiratory volume in one second (FEV1), forced vital capacity, and their ratio. However, variants with lower minor allele frequencies are less explored. We conducted a large-scale gene-smoking interaction meta-analysis on exonic rare and low-frequency variants involving 44,429 individuals of European ancestry in the discovery stage and sought replication in the UK BiLEVE study with 45,133 European ancestry samples and UK Biobank study with 59,478 samples. We leveraged data on cigarette smoking, the major environmental risk factor for reduced lung function, by testing gene-by-smoking interaction effects only and simultaneously testing the genetic main effects and interaction effects. The most statistically significant signal that replicated was a previously reported low-frequency signal in GPR126, distinct from common variant associations in this gene. Although only nominal replication was obtained for a top rare variant signal rs142935352 in one of the two studies, interaction and joint tests for current smoking and PDE3B were s
Intensive consolidation therapy compared with standard consolidation and maintenance therapy for adults with acute myeloid leukaemia aged between 46 and 60 years: final results of the randomized phase III study (AML 8B) of the European Organization for Research and Treatment of Cancer (EORTC) and the Gruppo Italiano Malattie Ematologiche Maligne dell’Adulto (GIMEMA) Leukemia Cooperative Groups
The most effective post-remission treatment to maintain complete remission (CR) in adults aged between 46 and 60 years with acute myeloid leukaemia (AML) is uncertain. Previously untreated patients with AML in CR after induction chemotherapy with daunorubicin and cytarabine were randomized between two intensive courses of consolidation therapy containing high-dose cytarabine, combined with amsacrine or daunorubicin and a standard consolidation and maintenance therapy containing standard dose cytarabine and daunorubicin. One hundred fifty-eight CR patients were assigned to the intensive group and 157 patients to the standard group. After a median follow-up of 7.5 years, the 4-year survival rate was 32 % in the intensive group versus 34 % in the standard group (P = 0.29). In the intensive group, the 4-year relapse incidence was lower than in the standard group: 55 and 75 %, respectively (P = 0.0003), whereas treatment-related mortality incidence was higher: 22 versus 3 % (P < 0.0001). Two intensive consolidation courses containing high-dose cytarabine as post-remission treatment in patients with AML aged between 46 and 60 years old did not translate in better long-term outcome despite a 20 % lower relapse incidence. Better supportive care and prevention of treatment-related complications may improve the overall survival after intensified post-remission therapy in this age group
Meta-analysis of exome array data identifies six novel genetic loci for lung function [version 1; peer review:1 approved, 1 approved with reservations]
Background: Over 90 regions of the genome have been associated with lung function to date, many of which have also been implicated in chronic obstructive pulmonary disease. Methods: We carried out meta-analyses of exome array data and three lung function measures: forced expiratory volume in one second (FEV1), forced vital capacity (FVC) and the ratio of FEV1 to FVC (FEV1/FVC). These analyses by the SpiroMeta and CHARGE consortia included 60,749 individuals of European ancestry from 23 studies, and 7,721 individuals of African Ancestry from 5 studies in the discovery stage, with follow-up in up to 111,556 independent individuals. Results: We identified significant (P<2•8x10 -7 ) associations with six SNPs: a nonsynonymous variant in RPAP1, which is predicted to be damaging, three intronic SNPs (SEC24C, CASC17 and UQCC1) and two intergenic SNPs near to LY86 and FGF10. Expression quantitative trait loci analyses found evidence for regulation of gene expression at three signals and implicated several genes, including TYRO3 and PLAU. Conclusions: Further interrogation of these loci could provide greater understanding of the determinants of lung function and pulmonary disease.</p
Variants associated withHHIP expression have sex-differential effects on lung function
Publisher Copyright: © 2020 Fawcett KA et al.Background: Lung function is highly heritable and differs between the sexes throughout life. However, little is known about sex-differential genetic effects on lung function. We aimed to conduct the first genome-wide genotype-by-sex interaction study on lung function to identify genetic effects that differ between males and females. Methods: We tested for interactions between 7,745,864 variants and sex on spirometry-based measures of lung function in UK Biobank (N=303,612), and sought replication in 75,696 independent individuals from the SpiroMeta consortium. Results: Five independent single-nucleotide polymorphisms (SNPs) showed genome-wide significant (P<5x10 -8) interactions with sex on lung function, and 21 showed suggestive interactions (P<1x10 -6). The strongest signal, from rs7697189 (chr4:145436894) on forced expiratory volume in 1 second (FEV 1) (P=3.15x10 -15), was replicated (P=0.016) in SpiroMeta. The C allele increased FEV 1 more in males (untransformed FEV 1 β=0.028 [SE 0.0022] litres) than females (β=0.009 [SE 0.0014] litres), and this effect was not accounted for by differential effects on height, smoking or pubertal age. rs7697189 resides upstream of the hedgehog-interacting protein ( HHIP) gene and was previously associated with lung function and HHIP lung expression. We found HHIP expression was significantly different between the sexes (P=6.90x10 -6), but we could not detect sex differential effects of rs7697189 on expression. Conclusions: We identified a novel genotype-by-sex interaction at a putative enhancer region upstream of the HHIP gene. Establishing the mechanism by which HHIP SNPs have different effects on lung function in males and females will be important for our understanding of lung health and diseases in both sexes.Peer reviewe
Association of Forced Vital Capacity with the Developmental Gene <i>NCOR2</i>
Background Forced Vital Capacity (FVC) is an important predictor of all-cause mortality in the absence of chronic respiratory conditions. Epidemiological evidence highlights the role of early life factors on adult FVC, pointing to environmental exposures and genes affecting lung development as risk factors for low FVC later in life. Although highly heritable, a small number of genes have been found associated with FVC, and we aimed at identifying further genetic variants by focusing on lung development genes. Methods Per-allele effects of 24,728 SNPs in 403 genes involved in lung development were tested in 7,749 adults from three studies (NFBC1966, ECRHS, EGEA). The most significant SNP for the top 25 genes was followed-up in 46,103 adults (CHARGE and SpiroMeta consortia) and 5,062 chi
Genome-wide association analysis identifies six new loci associated with forced vital capacity
Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10−8) with FVC in or near EFEMP1, BMP6, MIR129-2–HSD17B12, PRDM11, WWOX and KCNJ2. Two loci previously associated with spirometric measures (GSTCD and PTCH1) were related to FVC. Newly implicated regions were followed up in samples from African-American, Korean, Chinese and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and the pathogenesis of restrictive lung disease