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Rare and low‑frequency exonic 
variants and gene‑by‑smoking 
interactions in pulmonary function
Tianzhong Yang1,2, Victoria E. Jackson3, Albert V. Smith4, Han Chen5,6, Traci M. Bartz7,8, 
Colleen M. Sitlani8, Bruce M. Psaty9,10, Sina A. Gharib11, George T. O’Connor12,13, 
Josée Dupuis14, Jiayi Xu15,16, Kurt Lohman17, Yongmei Liu17, Stephen B. Kritchevsky18, 
Patricia A. Cassano16,19, Claudia Flexeder20, Christian Gieger21, Stefan Karrasch20,22,23, 
Annette Peters20,24, Holger Schulz20,23, Sarah E. Harris25,26, John M. Starr26,27, Ian J. Deary25,26, 
Ani Manichaikul28,29, Elizabeth C. Oelsner30,31, R. G. Barr31,32, Kent D. Taylor33, 
Stephen S. Rich34, Tobias N. Bonten35, Dennis O. Mook‑Kanamori36,37, Raymond Noordam38, 
Ruifang Li‑Gao36, Marjo‑Riitta Jarvelin39,40,41, Matthias Wielscher39, Natalie Terzikhan42,43, 
Lies Lahousse42,43, Guy Brusselle42,43, Stefan Weiss44,45, Ralf Ewert46, Sven Gläser46,47, 
Georg Homuth44, Nick Shrine3, Ian P. Hall48, Martin Tobin3,49, Stephanie J. London50*, 
Peng Wei51* & Alanna C. Morrison5*

Genome‑wide association studies have identified numerous common genetic variants associated 
with spirometric measures of pulmonary function, including forced expiratory volume in one second 
 (FEV1), forced vital capacity, and their ratio. However, variants with lower minor allele frequencies 
are less explored. We conducted a large‑scale gene‑smoking interaction meta‑analysis on exonic 
rare and low‑frequency variants involving 44,429 individuals of European ancestry in the discovery 
stage and sought replication in the UK BiLEVE study with 45,133 European ancestry samples 
and UK Biobank study with 59,478 samples. We leveraged data on cigarette smoking, the major 
environmental risk factor for reduced lung function, by testing gene‑by‑smoking interaction effects 
only and simultaneously testing the genetic main effects and interaction effects. The most statistically 
significant signal that replicated was a previously reported low‑frequency signal in GPR126, distinct 
from common variant associations in this gene. Although only nominal replication was obtained for 
a top rare variant signal rs142935352 in one of the two studies, interaction and joint tests for current 
smoking and PDE3B were significantly associated with  FEV1. This study investigates the utility 
of assessing gene‑by‑smoking interactions and underscores their effects on potential pulmonary 
function.
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Measures of pulmonary function provide important clinical and research tools for evaluating lung disease and 
other  morbidities1. Pulmonary function is used to diagnose chronic obstructive pulmonary disease and to moni-
tor the severity and progression of many lung conditions. Furthermore, even within the normal range, pulmonary 
function is a risk factor for mortality and morbidity from various  conditions2–5. Genome-wide association stud-
ies (GWASs) have identified many single nucleotide variants (SNVs) for pulmonary function after adjusting for 
cigarette smoking, a well-established risk factor for reduced pulmonary function, as a confounder and potential 
effect  modifier6–14. The interplay between genetic and environmental factors likely plays a role in complex traits, 
including chronic lung diseases. A large GWAS meta-analysis has shown the existence of SNV-by-smoking 
interaction in relation to two measures of pulmonary function (forced expiratory volume in one second,  FEV1, 
and the ratio of  FEV1 to the forced vital capacity,  FEV1/FVC) by performing joint analyses of genetic main 
effects and interaction effects of single SNVs and their interaction with  smoking14. However, there is a lack of 
gene-by-environment (GxE) interaction analysis involving low-frequency (minor allele frequency [MAF] 1% to 
5%) or rare variants (MAF less than 1%)15, which are typically not well captured or imputed by previous GWAS 
meta-analyses of pulmonary function. The more recent use of genotyping platforms including lower frequency 
and rare variants enables better assessment of the role of rare genetic variation in disease.

Due to the low power to detect association with rare variants, a commonly adopted strategy in analyzing rare 
variant-phenotype associations is to group variants according to genes or genomic regions and test whether the 
grouped variants are associated with the  phenotype16. While single-variant-based interaction tests for common 
variants are well-established17,18, methods for detecting rare variant GxE interactions are relatively new. Recently 
developed novel approaches for testing rare variant GxE interaction effects include a joint test that allows for 
simultaneous testing of the genetic main and interaction effects as well as the ability to assess gene-based GxE 
interactions only for both related and unrelated  individuals19–22. The joint test and the test for the interaction 
terms only are both important for different scientific hypotheses. The joint test assesses genetic associations with 
pulmonary function, accounting for heterogeneity of genetic effects in individuals with different environmental 
exposures (in our context, smoking behaviors). The test of the interaction terms only can identify genes that 
modify the effect of smoking on pulmonary function. For single variant analysis, an interaction requires at least 
four fold larger sample size than a genetic main effect of comparable  magnitude23. Similarly, for gene-based 
interaction tests, larger sample sizes are required for detection, especially for rare variants. This study is the first 
to incorporate GxE interactions in modeling rare and low-frequency genetic variants and smoking effects on 
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pulmonary function based on large samples. In discovery, we used genetic and phenotypic information from 
the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE)24 and SpiroMeta Consortia, 
and we sought replication of findings in the UK BiLEVE and UK Biobank studies.

Results
Characteristics and sample sizes of the study cohorts are presented in Table 1. We focused on two smoking cat-
egories throughout: ever-smokers vs never-smokers and current smokers vs never-smokers and past-smokers 
combined. The percentage of ever-smokers per study ranged from 30 to 61% in 44,429 European Ancestry 
participants and the percentage of current smokers per study ranged from 6 to 25%.

Quantile–quantile plots of the meta-analysis results for the interaction and joint tests from the six combina-
tions of smoking variables status (ever smoking or current smoking) and pulmonary function measures  (FEV1, 
FVC, and  FEV1/FVC ratio) of discovery stage are presented in Figure S1. Some quantile–quantile plots suggest 
inflation in the gene-by-current smoking interaction analyses, which could be due to the low frequency of 
current smokers. The few studies with larger inflation factors (λ > 1.5) in testing interactions between current 
smoking status and a specific lung function measure were not included in the corresponding meta-analysis of 
this smoking-trait combination (Table S1).

In the discovery-stage meta-analyses, GPR126 was significantly associated with  FEV1/FVC in the gene-by-
current-smoking (p-value = 1.9E−09) and gene-by-ever-smoking analyses (p-value = 2.8E−08) based on joint tests. 
In both replication studies, GPR126 was also statistically significant in the joint tests for gene-by-current-smoking 
(p-value = 1.1E−16 in UK BiLEVE, 1.4E−30 in UK Biobank) and gene-by-ever-smoking (p-value = 1.7E−16 in 
UK BiLEVE, 5.2E−29 in UK Biobank, Table 2). The average number of rare variants in GPR126 across studies 
was 18.8 (range from 5 to 25). The p-value of the interaction test was not significant for either smoking exposure 
evaluated (p-value > 0.5), suggesting that these joint test results were largely due to the genetic main effects.

Table 1.  Descriptive statistics for each participating cohort. FEV1 and FVC are in unit of mL.

Study Sample size Male (%) Age (sd)
Ever smokers 
(%)

Current 
smoker (%) FEV1 (sd) FVC (sd) Ratio (sd)

Discovery stage

ARIC 10,874 46.8 54.3 (5.7) 40.3 24.3 2935.4 (768.1) 3977.2 (978.0) 73.8 (7.6)

FHS 6172 46.6 44.9 (10.8) 47.8 19.1 3325.6 (844) 4321.9 
(1043.2) 77.0 (7.0)

1958BC 4594 55.7 42 (0) 53.4 24.9 3350.0 (782.74) 4275.0 
(1024.6) 78.9 (8.4)

RS 567 54.7 79.9 (5.0) 30.0 9.9 2265.68 
(679.79) 3025.1 (860.3) 75.0 (8.0)

SHIP 4694 49.3 49.9 (14.4) 39.3 24.6 3260.9 (905.6) 4021.7 
(1087.5) 81.2 (6.9)

NFBC1966 1431 45.6 31 (0) 53.0 25.6 3925.1 (778.1) 4685.2 (989.1) 84.2 (6.1)

NEO 6203 47.5 55.7 (6.0) 35.6 16.2 3239.8 (795.4) 4222.8 
(1025.1) 77.0 (6.7)

CHS 3496 43.3 72.6 (5.5) 43.5 10.1 2114.8 (653.3) 3026.2 (842.0) 69.8 (10.1)

AGES 1459 40.9 76.3 (8.8) 45.1 11.9 2146.1 (676.0) 2883.8 (845.1) 74.1 (8.8)

LBC1936 970 50.4 69.5 (0.8) 47.2 10.7 2370.7 (676.1) 3040.6 (861.8) 78.5 (10.0)

KORA 1217 46.8 51.6 (5.7) 60.5 24.2 3341.7 (822.0) 4307.8 
(1014.2) 77.6(6.2)

MESA 1298 49.4 66.0 (9.8) 43.6 7.6 2565.5 (763.59) 3510.9 
(993.34) 73.3 (8.7)

HABC 1454 53.2 73.7 (2.8) 56.5 6.5 2313.7 (653.5) 3114.5 (812.4) 73.7 (2.8)

Replication stage

UK BiLEVE 45,133 49.1 57.0 (7.9) 49.3 18.2 3565.0 (851.7) 3573.0 
(1040.1) 74.0 (7.3)

UK Biobank 59,478 43.2 56.0 (8.0) 45.0 8.5 2874.0 (725) 3754 (932.1) 76.7 (5.6)

Table 2.  Significant genes in the meta-analyses (significant threshold = 5.7E−07).

Gene Chr

Smoking status 
and phenotype 
Combination

Average # 
variants across 
studies (range)

Discovery Stage Replication Stage (UK BiLEVE) Replication Stage (UK Biobank) GTEx

P-value 
(interaction) P-value (joint)

P-value 
(interaction) P-value (joint)

P-value 
(interaction) P-value (joint)

Expressed in 
lung

GPR126 6
Current & Ratio

18.8 (5–25)
0.40 1.9E−09 0.61 1.1E−16 0.54 1.4E−30 Yes

Ever & Ratio 0.91 2.8E−08 0.98 1.7E−16 0.39 5.2E−29 Yes

PDE3B 11 Current &  FEV1 7.2 (4–9) 7.1E−06 2.9E−07 0.94 0.37 0.25 0.44 Yes
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A common intronic variant rs3817928 (MAF = 22%) in GPR126 was previously found to be significantly 
associated with  FEV1/FVC among European  ancestry25. Conditioning on this common variant rs3817928, the 
joint test of gene-by-current-smoking analysis for GPR126 remained nominally significant in the discovery 
(p-value = 2.4E−03) and genome-wide significant in the replication studies (p-value = 3.9E−09 in UK BiLEVE 
and p-value = 9.6E−17 in UK Biobank, Table 3). The joint test of gene-by-ever-smoking analysis conditioning 
on rs3817928 was also nominally significant in the discovery stage and genome-wide significant in the replica-
tion stage (p-value = 0.01 in discovery stage, p-value = 4.3E−09 in UK BiLEVE, and p-value = 2.5E−16 in UK 
Biobank, Table 3).

To further determine whether any single low-frequency or rare variant may be driving the aggregate variant 
test results, we conducted single variant interaction only and joint test analyses for all the SNVs in GPR126 and 
report the most significant SNV, rs17280293 (MAF = 3%), in Table 4. Figures S2 and S3 show the regional asso-
ciation plots for GPR126. The significant joint test results for rs17280293 were replicated in the UK BiLEVE and 
UK Biobank studies (Table 4). This SNV is predicted to be deleterious by SIFT score (score = 0.001) in  dbNSFP26.

SNV rs17280293 is in low linkage disequilibrium (LD) with the previously reported common variant 
rs3817928 in GPR126  (R2 = 0.13 based on 1000 Genomes database Phase  327), thus rs17280293 remained highly 
significant in the single-variant-based analysis when conditioning on rs3817928 (Table 3). Recently, it was shown 
that the rs17280293 was the leading signal that drove a gene-based association between GPR126 and  FEV1/FVC 
when studying genetic main  effects15. It was also found to be the most significant signal in the GPR126 region 
associated with diffusing capacity of the  lung28. Our analyses on the interaction-only and joint analyses further 
highlighted the importance of this low-frequency variant.

PDE3B was significantly associated with  FEV1 in the interaction-only test (p-value = 1.9E−06) and joint test 
(p-value = 2.9E−07) in the gene-by-current-smoking analyses (Table 2). The p-value of the interaction test was 
highly significant, suggesting that the joint test result was at least partially driven by the interaction effects. 
However, the interaction effect was not replicated in either UK BiLEVE or UK Biobank. Single-variant-based 
interaction and joint analyses were performed on the variants within PDE3B (see the regional association plots in 
Figures S4 and S5). The top two variants are present in Table 4, among which variant rs142935352 (MAF = 0.6%) 
in PDE3B had a significant SNV-by-current smoking interaction in relation to  FEV1 in the discovery studies and 
was nominally significant in the UK BiLEVE replication study for both the interaction-only (p-value = 0.01) and 
joint tests (p-value = 0.02). The other top variant rs61736639 (MAF = 0.7%) was not significant in the replica-
tion datasets. According to the Genotype-Tissue Expression (GTEx) project (29, accessed on 07/18/2021) both 
GPR126 (median transcripts per million, TPM = 20.2) and PDE3B (median TPM = 8.8) were expressed in lung 
tissue, relative to a minimal expression threshold of TPM > 0.130.

Discussion
Most genome-wide analyses of pulmonary function have focused on common variants or genetic main  effects25,31. 
However, the gene-level association could be missed if the signal is driven by rare variants or there is interac-
tion with environmental exposures. Therefore, we focused on rare and low-frequency exonic genetic variants 
and their interaction with cigarette smoking, the major environmental risk factor for reduced lung function. 
Specifically, we performed gene-based tests of GxE interaction only and joint tests assessing genetic main effects 
and interaction effects. The joint analysis has been shown to be nearly optimal across a variety of models for 

Table 3.  Conditional analysis of GPR126 (adjusting for a common variant rs3817928).

Gene /variant
Smoking status and phenotype 
Combination

Discovery Stage Replication Stage (UK BiLEVE) Replication Stage (UK Biobank)

P-value (interaction) P-value (joint) P-value (interaction) P-value (joint) P-value (interaction) P-value (joint)

Conditional gene-based analysis

GPR126
Current & Ratio 0.19 2.44E−03 0.52 3.90E−09 0.77 9.58E−17

Ever & Ratio 0.89 1.13E−02 0.97 4.26E−09 0.47 2.47E−16

Conditional single-variant analysis on the top signal in GPR126

rs17280293
Current & Ratio 0.66 3.93E−03 0.46 3.94E−09 0.68 9.31E−17

Ever & Ratio 0.98 6.10E−03 0.97 3.97E−09 0.89 2.44E−16

Table 4.  Single variant analysis for the identified significant genes.

Variants Gene Chr INFO MAF (%) Combination

Discovery Stage Replication Stage (UK BiLEVE) Replication Stage (UK Biobank)

P-value 
(interaction) P-value (joint)

P-value 
(interaction) P-value (joint)

P-value 
(interaction) P-value (joint)

rs17280293 GPR126 6 1 2.8
Current & Ratio 0.74 8.0E−06 0.52 1.2E−16 0.50 1.5E−30

Ever & Ratio 0.98 2.8E−05 0.99 1.6E−16 0.97 5.3E−29

rs142935352 PDE3B 11 0.98 0.6 Current &  FEV1 5.8E−03 0.011 0.01 0.03 0.88 0.99

rs61736639 PDE3B 11 0.96 0.7 Current &  FEV1 3.5E−03 1.7E−05 0.71 0.10 0.84 0.56
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common  variants17. In some scenarios, the GxE interaction only tests could have higher statistical power than the 
joint  tests19,21. To boost the statistical power for discovery, we combined data across thirteen studies with 44,429 
European ancestry individuals through meta-analyses. Significant genes were examined in two replication studies 
with a total of 104,611 European ancestry individuals. This study is the first and the largest to incorporate GxE 
interactions in modeling rare and low-frequency variant genetic and smoking effects on pulmonary function. 
However, statistical power would continue to be improved with increased sample size. Table S3 and S4 provide 
the top 5 genes for the interaction only and joint tests, which may include the putative genes that did not reach 
genome-wide significance in the study.

Our results for the GxE joint analysis support the involvement of rare variants in a locus, GPR126. We identi-
fied one low-frequency variant rs17280293 which was successfully replicated in our study and was previously 
reported by Jackson et al15 in a genetic main effect analysis. The SNV is in low LD with the known common vari-
ant, suggesting a distinct role of the rare variants. Neither gene-based nor single variant tests identified interaction 
with smoking for this SNV or this gene. Additionally, we found that PDE3B was significantly associated with 
 FEV1 in the GxE interaction and joint association analysis in the discovery studies, however neither the interac-
tion or joint effect gene-based tests replicated, although one leading rare variant rs142935352 reached nominal 
significance in UK BiLEVE for the interaction and joint tests. PDE3B had not been reported to be associated with 
lung function but is believed to be an important regulatory factor in modulating the inflammatory response and 
expressed in the  lung32. One possible explanation is that smoking increases the inflammatory response in the 
lung, leading to the gene-by-smoking interaction. The signal of PDE3B in the discovery dataset was mainly driven 
by two SNVs (rs142935352 and rs61736639), both quite rare (MAF < 0.5% in EA), thus difficult to replicate even 
with large samples. We found that it was challenging to replicate rare signals in general, as rare variants varied 
across different studies. A variant present in one study was likely not included in the other study (for example, 
being monomorphic or having high missing rates).

Our study has limitations. First, the results were obtained from European ancestry populations, although we 
recognized the importance of conducting multi-ancestry studies to identify novel association  signals31. Second, 
a few quantile–quantile plots suggested inflation in the gene-by-current-smoking interaction and joint test sta-
tistics (Figure S1). GxE analysis is well-known to be prone to systematic inflation for common variants and there 
could be various factors driving the  inflation33–35. It is not surprising to see such inflation in rare-variant-based 
GxE analysis. We speculate that the inflation occurred in some studies due to a combination of a low proportion 
of current smokers and relatively small sample size, where the asymptotic property of the test statistics may not 
hold. For example, LBC1936 with a sample size of 970 and 11% of current smokers had an inflation factor > 1.5 
for gene-by-current smoking interaction tests but not gene-by-ever smoking interaction (Table S1). Although we 
took a number of steps to reduce the inflation (adjusting for principal components, excluding studies with large 
inflation factors, excluding phenotypic outliers followed by inverse normal transformation of the spirometric 
measures of pulmonary function, excluding a study for a particular gene if it had low minor allele count (< 20), 
and using dichotomized smoking risk  factors21), there could still be some inflation. Third, we examined exonic 
rare variants, but we note that signals from rare variants in the regulatory regions are likely to interact with smok-
ing. Inclusion of rare regulatory variants could improve our understanding of disease mechanisms and warrants 
further investigation. Fourth, our analysis did not take into account the type of cigarette smoking, which could 
increase the difficulty of replication due to the potential heterogeneity of GxE interaction effects. Fifth, rare and 
low-frequency variants in the two replication datasets UK BiLEVE and Biobank Study were imputed using the 
1000 Genomes and UK10K haplotype reference  panel36. Although the imputation quality had been examined 
through a pseudo-GWAS  simulation36, it may still be suboptimal comparing with sequencing data, thus increas-
ing the replication difficulty. In our case, SNVs included in GPR126 and PDE3B all had INFO score > 0.8 and the 
leading SNVs had INFO score > 0.95 (Table 4), thus less likely to be affected by the genotyping array platform.

The strengths of the study include the relatively large sample size with genotyping of rare and low-frequency 
variants. In addition, we employed recently developed methods for incorporating environmental interactions 
in the study of the influence of rare variants in disease to decrease the multiple testing burden, potentially 
increase the statistical power. We found that one of the first discovered genes associated with pulmonary func-
tion in GWAS of common variants, GPR126, likely has low-frequency variants contributing to its role in this 
phenotype and other putative genes. The gene was successfully replicated but the signal may be driven by the 
genetic main effect.

Materials and methods
Ethics statement. All the studies contributed to our analyses have their protocols approved by the respec-
tive local Institutional Review Board with the details in the Supplementary Materials. All participants wrote 
informed consent for the genetic studies and all experiments were performed in accordance with relevant guide-
lines and regulations.

Cohort studies. We combined data from 13 studies for the discovery stage, either from the CHARGE Con-
sortium or the SpiroMeta Consortium: the Age, Environment, Susceptibility (AGES) study, Atherosclerosis Risk 
in Communities (ARIC)  study37, British 1958 Birth Cohort (1958BC)38, Cardiovascular Health Study (CHS)39, 
Framingham Heart Study (FHS)40,41, Health, Aging, and Body Composition (HABC)  study42, Northern Finland 
Birth Cohort of 1966 (NFBC1966)43, Multi-Ethnic Study of Atherosclerosis (MESA)44, Rotterdam Study (RS)45, 
Study of Health in Pomerania (SHIP)46, the Netherlands Epidemiology of Obesity Study (NEO)47, Lothian in 
Birth Cohort 1936 (LBC1936)  study48, and Cooperative Health Research in the Region of Augsburg (KORA) 
 study49. The discovery studies consisted of 44,429 individuals. Replication was conducted in two studies: UK 
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BiLEVE Study (n = 45,133) and UK Biobank (n = 59,478)50. Study descriptions are provided in the Supplemen-
tary Note of Jackson et al.,  201815 and Artigas et al.,  201551.

Pulmonary function measurements and smoking information. Spirometric measures included 
 FEV1, FVC, and their ratio  (FEV1/FVC). Details of the spirometry have been previously reported for the 
 discovery15 and replication  studies52. Because outlier phenotype values can be influential in rare variant analy-
ses, pulmonary function values with residuals after regressing out covariates (listed below) on each lung func-
tion trait larger than four standard deviations from the mean were examined by investigators from each cohort 
expert in the collection of pulmonary function data. Data points were evaluated regarding whether they were 
biologically plausible for that individual as opposed to more consistent with data errors. To ensure the normal-
ity of the  FEV1, FVC, and  FEV1/FVC, a ranked-based inverse-normal transformation was performed on each 
pulmonary function trait by the individual participating studies. For  FEV1/FVC, the ratio was first calculated 
prior to transformation.

Cigarette smoking can have important adverse effects on pulmonary function. Smoking exposure was ascer-
tained by questionnaire at the same time as the pulmonary function tests used in the analyses. Study participants 
were classified in two different ways: ever smokers vs never-smokers and current smokers vs never-smokers and 
past-smokers combined. Current smokers were defined as individuals who smoked at least one cigarette per 
day within the prior 12 months, past smokers were defined as smoking at least one cigarette per day but had 
stopped at least 12 months, and never smokers reported never having smoked. Ever smokers were a combination 
of current and past smokers.

Genotyping and quality control. Genotyping of the discovery stage studies was performed mainly using 
the Illumina HumanExome BeadChip (Table S2). To improve accurate calling of rare variants, genotyped data 
from nine studies (ARIC, FHS, RS, CHS, AGES, LBC1936, and MESA) were called using GenCall in Illumina’s 
Genome Studio and the curated clustering files from the CHARGE joint calling  effort53. The remaining stud-
ies (1958BC, KORA, and SHIP) called their genotypes in accordance to the UK exome chip consortium best 
 practices36 using  zCall54.

All studies performed comparable sample-level quality control steps and removed individuals according to 
the standard quality control metrics, i.e., sex mismatch, duplicate pairs, unexpected relatives, missing pulmonary 
function measurement, or missing covariate. Other than the standard variant-level quality control  step53, we 
retained only nonsynonymous variants annotated by  dbNSFP26 with MAF less than 5% among EAs and excluded 
monomorphic variants, variants with missing rates larger than 5%, and variants on the sex chromosomes. These 
low-frequency and rare variants were grouped by gene region in the aggregate variant  tests26. Missing genotypes 
were imputed using a random draw from the binomial distribution with two trials and success probability equal 
to the estimated MAF. Genes with one or zero variants or overall cumulative minor allele count less than 20 
were excluded.

The replication samples were genotyped using the Affymetrix UK BiLEVE or UK Biobank arrays, which 
both include substantial overlap with the Illumina Human Exome  BeadChip55. Thorough sample and genotype 
quality control steps were undertaken before imputation to a combined 1000  Genomes56 and UK10K Project 
reference  panel57. Following imputation, SNVs were excluded if they had imputation INFO score ≤ 0.5 or minor 
allele count < 3. Full details of the quality control and imputation procedure of the UK BiLEVE/UK Biobank 
genotype data were described  elsewhere52.

Statistical analysis. Since single-variant tests are usually underpowered for analyzing rare genetic variants, 
we used an aggregate variant test that analyzes multiple rare variants in a gene. For studies other than FHS, we 
utilized the R package  rareGE58 to conduct gene-based interaction and joint tests that simultaneously test the 
genetic main effects as well as GxE interaction effects. As a set-based variance component test, rareGE has been 
shown to be powerful across different underlying GxE association  patterns19. For FHS, we used a modified rar-
eGE joint test which incorporates correlation among family members by including a random intercept with 
covariance structure proportional to the kinship  matrix19,59. The rareGE interaction, joint and modified joint 
tests are briefly described in the Supplementary Materials. Both smoking variables were included in the linear 
regression model as covariates, while one of them was modeled as the primary exposure variable of interest and 
was tested for interactions. This resulted in a total of six pairs of pulmonary function traits (transformed  FEV1, 
FVC, and ratio) and smoking status (ever vs never smoking or current vs past plus never smoking). Additional 
covariates included age, age-squared, sex, height, height-squared, recruitment sites, and the first 10 principal 
components accounting for any underlying population substructure. Principal components were constructed by 
each study using GWAS SNVs or exome-chip ancestry informative markers if GWAS not  available55. Weight was 
only included as an adjustment variable for FVC as it is more strongly influenced by adiposity. Study-specific 
results were meta-analyzed by combining the p-values of the gene-based tests from each discovery study using 
Stouffer’s weighted Z-score  method60: (1) transform p-values to z-values by the inverse CDF of a Gaussian dis-
tribution, i.e., Zi = �−1(Pi) , (2) weight the z-values of each study by the sample size, i.e., Z =

∑

k

i=1
wiZi

√

∑

k

i=1
w
2
i

 , where 

wi =
√
Ni   and Ni was the ith study’s sample size. The final meta-analysis p-value was calculated as P = φ(Z) . 

Studies with genomic control inflation factor λ > 1.5 were excluded.
An a priori significance threshold was defined using the Bonferroni correction for the number of tests evalu-

ated. Specifically, we used a significant threshold at 5.7E−07 based on 14,591 genes for 6 smoking status-lung 
outcome combinations. Significant genes were evaluated for replication in the UK BiLEVE and UK Biobank 
studies. To identify specific low-frequency or rare variants driving the signals from the aggregate variant tests, 
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we conducted single variant analyses for the significant genes in both the discovery and replication datasets. 
Additionally, conditional analyses were performed for significant replicated genes (GPR126 herein) with the 
previously reported leading common SNV, where the reported signal drivers were added in the gene-based 
test as covariates. For conditional analyses, p-values less than 0.05 were considered as nominally significant. 
We further investigated the tissue-specific gene expression of the significant genes on the GTEx Project portal 
(https:// gtexp ortal. org/).
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