198 research outputs found

    CFD analysis of liquid stream going through the wire-screen mesh

    Get PDF
    Paper presented at the 5th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, South Africa, 1-4 July, 2007.Wire-screen mesh is normally used for the removal of particles from a liquid stream. Here we consider a system where fluid passes wire-screen mesh perpendicularly. The configurations of wire-screen mesh such as diameter and shape factor of wire affect the stream of fluid going through the screen. In this study, we performed a theoretical approach to the relation between wire mesh and fluid stream with computational fluid dynamics (CFD). FLUENT is used for the simulation. Head loss can be estimated by Rose equation when the stream passes through the wire-mesh (Rose 1945). The drag coefficient (CD) varies with the stream types. The other parameters depend on a specific mesh, velocity and pressure. In the experiment we used a screen of 50 mesh-size and water as a fluid. The pressure drop during water flow was determined. The average and maximum velocities of water were calculated. On the basis of these values, we derived a proportional factor between the velocity of fluid and head loss that can estimate CD.cs201

    Seesaw tau lepton mass and calculable neutrino masses in a 3-3-1 model

    Full text link
    In a version of the 3-3-1 model proposed by Duong and Ma the introduction of the scalar sextet for giving mass to the charged leptons is avoided by adding a singlet charged lepton. We show that in this case the τ\tau lepton gains mass through a seesaw--like mechanism. Besides we show how to generate neutrino masses at the tree and at the 1-loop level with the respective Maki-Nakagawa-Sakata leptonic mixing matrices.Comment: revtex, 5 pages and one eps figure. Published versio

    Electric charge quantization and the muon anomalous magnetic moment

    Get PDF
    We investigate some proposals to solve the electric charge quantization puzzle, which simultaneously explain the recent measured deviation on the muon anomalous magnetic moment. For this we assess extensions of the Electro-Weak Standard Model spanning modifications on the scalar sector only. It is interesting to verify that one can have modest extensions which easily account for the solution for both problems.Comment: 20 pages, 1 figures, needs macro axodraw.st

    Phenol Dissociation on Pristine and Defective Graphene

    Get PDF
    Phenol (C6H5O‒H) dissociation on both pristine and defective graphene sheets in terms of associated enthalpic requirements of the reaction channels was investigated. Here, we considered three common types of defective graphene, namely, Stone-Wales, monovacancy and divacancy configurations. Theoretical results demonstrate that, graphene with monovacancy creates C atoms with dangling bond (unpaired valence electron), which remains particularly useful for spontaneous dissociation of phenol into phenoxy (C6H5O) and hydrogen (H) atom. The reactions studied herein appear barrierless with reaction exothermicity as high as 2.2 eV. Our study offers fundamental insights into another potential application of defective graphene sheets

    Deformation-induced microstructural banding in TRIP steels

    Get PDF
    Microstructure inhomogeneities can strongly influence the mechanical properties of advanced high-strength steels in a detrimental manner. This study of a transformation-induced plasticity (TRIP) steel investigates the effect of pre-existing contiguous grain boundary networks (CGBNs) of hard second-phases and shows how these develop into bands during tensile testing using in situ observations in conjunction with digital image correlation (DIC). The bands form by the lateral contraction of the soft ferrite matrix, which rotates and displaces the CGBNs of second-phases and the individual features within them to become aligned with the loading direction. The more extensive pre-existing CGBNs that were before the deformation already aligned with the loading direction are the most critical microstructural feature for damage initiation and propagation. They induce micro-void formation between the hard second-phases along them, which coalesce and develop into long macroscopic fissures. The hard phases, retained austenite and martensite, were not differentiated as it was found that the individual phases do not play a role in the formation of these bands. It is suggested that minimizing the presence of CGBNs of hard second-phases in the initial microstructure will increase the formability

    Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at sNN\sqrt{s_{_{\rm NN}}} = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in η<0.8|\eta|<0.8 and 0.3<pT<200.3 < p_T < 20 GeV/cc are compared to the expectation in pp collisions at the same sNN\sqrt{s_{\rm NN}}, scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor RAAR_{\rm AA}. The result indicates only weak medium effects (RAAR_{\rm AA} \approx 0.7) in peripheral collisions. In central collisions, RAAR_{\rm AA} reaches a minimum of about 0.14 at pT=6p_{\rm T}=6-7GeV/cc and increases significantly at larger pTp_{\rm T}. The measured suppression of high-pTp_{\rm T} particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb-Pb collisions at the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98

    Bilarge Neutrino Mixing and \mu - \tau Permutation Symmetry for Two-loop Radiative Mechanism

    Full text link
    The presence of approximate electron number conservation and \mu-\tau permutation symmetry of S_2 is shown to naturally provide bilarge neutrino mixing. First, the bimaximal neutrino mixing together with U_{e3}=0 is guaranteed to appear owing to S_2 and, then, the bilarge neutrino mixing together with |U_{e3}|<<1 arises as a result of tiny violation of S_2. The observed mass hierarchy of \Delta m^2_{\odot}<<\Delta m^2_{atm} is subject to another tiny violation of the electron number conservation. This scenario is realized in a specific model based on SU(3)_L x U(1)_N with two-loop radiative mechanism for neutrino masses. The radiative effects from heavy leptons contained in lepton triplets generate the bimaximal structure and those from charged leptons, which break S_2, generate the bilarge structure together with |U_{e3}|<<1. To suppress dangerous flavor-changing neutral current interactions due to Higgs exchanges especially for quarks, this S_2 symmetry is extended to a discrete Z_8 symmetry, which also ensures the absence of one-loop radiative mechanism.Comment: 18 pages, 7 figures, to appear in Phys. Rev.

    Organic Superconductors: when correlations and magnetism walk in

    Full text link
    This survey provides a brief account for the start of organic superconductivity motivated by the quest for high Tc superconductors and its development since the eighties'. Besides superconductivity found in 1D organics in 1980, progresses in this field of research have contributed to better understand the physics of low dimensional conductors highlighted by the wealth of new remarkable properties. Correlations conspire to govern the low temperature properties of the metallic phase. The contribution of antiferromagnetic fluctuations to the interchain Cooper pairing proposed by the theory is borne out by experimental investigations and supports supercondutivity emerging from a non Fermi liquid background. Quasi one dimensional organic superconductors can therefore be considered as simple prototype systems for the more complex high Tc materials.Comment: 41 pages, 21 figures to be published in Journal of Superconductivity and Novel Magnetis

    Transverse momentum spectra of charged particles in proton-proton collisions at s=900\sqrt{s} = 900 GeV with ALICE at the LHC

    Get PDF
    The inclusive charged particle transverse momentum distribution is measured in proton-proton collisions at s=900\sqrt{s} = 900 GeV at the LHC using the ALICE detector. The measurement is performed in the central pseudorapidity region (η<0.8)(|\eta|<0.8) over the transverse momentum range 0.15<pT<100.15<p_{\rm T}<10 GeV/cc. The correlation between transverse momentum and particle multiplicity is also studied. Results are presented for inelastic (INEL) and non-single-diffractive (NSD) events. The average transverse momentum for η<0.8|\eta|<0.8 is <pT>INEL=0.483±0.001\left<p_{\rm T}\right>_{\rm INEL}=0.483\pm0.001 (stat.) ±0.007\pm0.007 (syst.) GeV/cc and \left_{\rm NSD}=0.489\pm0.001 (stat.) ±0.007\pm0.007 (syst.) GeV/cc, respectively. The data exhibit a slightly larger <pT>\left<p_{\rm T}\right> than measurements in wider pseudorapidity intervals. The results are compared to simulations with the Monte Carlo event generators PYTHIA and PHOJET.Comment: 20 pages, 8 figures, 2 tables, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/390

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
    corecore