36 research outputs found

    Monolithic or hierarchical star formation? A new statistical analysis

    Full text link
    We consider an analytic model of cosmic star formation which incorporates supernova feedback, gas accretion and enriched outflows, reproducing the history of cosmic star formation, metallicity, supernovae type II rates and the fraction of baryons allocated to structures. We present a new statistical treatment of the available observational data on the star formation rate and metallicity that accounts for the presence of possible systematics. We then employ a Bayesian Markov Chain Monte Carlo method to compare the predictions of our model with observations and derive constraints on the 7 free parameters of the model. We find that the dust correction scheme one chooses to adopt for the star formation data is critical in determining which scenario is favoured between a hierarchical star formation model, where star formation is prolonged by accretion, infall and merging, and a monolithic scenario, where star formation is rapid and efficient. We distinguish between these modes by defining a characteristic minimum mass, M > 10^{11} M_solar, in our fiducial model, for early type galaxies where star formation occurs efficiently. Our results indicate that the hierarchical star formation model can achieve better agreement with the data, but that this requires a high efficiency of supernova-driven outflows. In a monolithic model, our analysis points to the need for a mechanism that drives metal-poor winds, perhaps in the form of supermassive black hole-induced outflows. Furthermore, the relative absence of star formation beyond z ~ 5 in the monolithic scenario requires an alternative mechanism to dwarf galaxies for reionizing the universe at z ~ 11, as required by observations of the microwave background. While the monolithic scenario is less favoured in terms of its quality-of-fit, it cannot yet be excluded.Comment: Expanded discussion on the role of mergers and on reionization in the monolithic scenario, refs added, main results unchanged. Matches version to appear in MNRA

    Monolithic or hierarchical star formation? A new statistical analysis

    Get PDF
    We consider an analytic model of cosmic star formation which incorporates supernova feedback, gas accretion and enriched outflows, reproducing the history of cosmic star formation, metallicity, supernovae type II rates and the fraction of baryons allocated to structures. We present a new statistical treatment of the available observational data on the star formation rate and metallicity that accounts for the presence of possible systematics. We then employ a Bayesian Markov Chain Monte Carlo method to compare the predictions of our model with observations and derive constraints on the 7 free parameters of the model. We find that the dust correction scheme one chooses to adopt for the star formation data is critical in determining which scenario is favoured between a hierarchical star formation model, where star formation is prolonged by accretion, infall and merging, and a monolithic scenario, where star formation is rapid and efficient. We distinguish between these modes by defining a characteristic minimum mass, M > 10^{11} M_solar, in our fiducial model, for early type galaxies where star formation occurs efficiently. Our results indicate that the hierarchical star formation model can achieve better agreement with the data, but that this requires a high efficiency of supernova-driven outflows. In a monolithic model, our analysis points to the need for a mechanism that drives metal-poor winds, perhaps in the form of supermassive black hole-induced outflows. Furthermore, the relative absence of star formation beyond z ~ 5 in the monolithic scenario requires an alternative mechanism to dwarf galaxies for reionizing the universe at z ~ 11, as required by observations of the microwave background. While the monolithic scenario is less favoured in terms of its quality-of-fit, it cannot yet be excluded.Comment: Expanded discussion on the role of mergers and on reionization in the monolithic scenario, refs added, main results unchanged. Matches version to appear in MNRA

    The Infrared Luminosity of Galaxy Clusters

    Full text link
    The aim of this study is to quantify the infrared luminosity of clusters as a function of redshift and compare this with the X-ray luminosity. This can potentially constrain the origin of the infrared emission to be intracluster dust and/or dust heated by star formation in the cluster galaxies. We perform a statistical analysis of a large sample of galaxy clusters selected from existing databases and catalogues.We coadd the infrared IRAS and X-ray RASS images in the direction of the selected clusters within successive redshift intervals up to z = 1. We find that the total infrared luminosity is very high and on average 20 times higher than the X-ray luminosity. If all the infrared luminosity is to be attributed to emission from diffuse intracluster dust, then the IR to X-ray ratio implies a dust-to-gas mass abundance of 5e-4. However, the infrared luminosity shows a strong enhancement for 0.1 < z < 1, which cannot be attributed to cluster selection effects. We show that this enhancement is compatible with a star formation rate in the member galaxies that is typical of the central Mpc of the Coma cluster at z = 0 and evolves with the redshift as (1+z)^5. It is likely that most of the infrared luminosity that we measure is generated by the ongoing star formation in the member galaxies. From theoretical predictions calibrated on extinction measurements (dust mass abundance equal to 1e-5), we expect only a minor contribution, of a few percent, from intracluster dust.Comment: 9 pages, 7 figures, accepted july 31st 2008 for publication in Astronomy and Astrophysics, language improved for this versio

    The effective stability parameter for two-component galactic discs: Is 1/Q ~ 1/Q_stars + 1/Q_gas ?

    Get PDF
    The Wang-Silk approximation, 1/Q ~ 1/Q_stars + 1/Q_gas, is frequently used for estimating the effective Q parameter in two-component discs of stars and gas. Here we analyse this approximation in detail, and show how its accuracy depends on the radial velocity dispersions and Toomre parameters of the two components. We then propose a much more accurate but still simple approximation for the effective Q parameter, which further takes into account the stabilizing effect of disc thickness. Our effective Q parameter is a natural generalization of Toomre's Q, and as such can be used in a wide variety of contexts, e.g. for predicting star formation thresholds in galaxies or for measuring the stability level of galactic discs at low and high redshifts.Comment: MNRAS, in pres

    Tidal disruption of satellite galaxies in a semi-analytic model of galaxy formation

    Get PDF
    We introduce a new physical recipe into the De Lucia and Blaizot version of the Munich semi-analytic model built upon the Millennium dark matter simulation: the tidal stripping of stellar material from satellite galaxies during mergers. To test the significance of the new physical process we apply a Monte Carlo Markov Chain parameter estimation technique constraining the model with the KK-band luminosity function, BVB-V colours and the black hole-bulge mass relation. The differences in parameter correlations, and in the allowed regions in likelihood space, reveal the impact of the new physics on the basic ingredients of the model, such as the star-formation laws, feedback recipes and the black hole growth model. With satellite disruption in place, we get a model likelihood four times higher than in the original model, indicating that the new process seems to be favoured by observations. This is achieved mainly due to a reduction in black hole growth that produces a better agreement between the properties of central black holes and host galaxies. Compared to the best-fit model without disruption, the new model removes the excess of dwarf galaxies in the original recipe with a more modest supernova heating. The new model is now consistent with the three observational data sets used to constrain it, while significantly improving the agreement with observations for the distribution of metals in stars. Moreover, the model now follows the build up of intra-cluster light

    The effect of thermally pulsating asymptotic giant branch stars on the evolution of the rest-frame near-infrared galaxy luminosity function

    Get PDF
    We address the fundamental question of matching the rest-frame K-band luminosity function (LF) of galaxies over the Hubble time using semi-analytic models, after modification of the stellar population modelling. We include the Maraston evolutionary synthesis models, that feature a higher contribution by the Thermally Pulsating - Asymptotic Giant Branch (TP-AGB) stellar phase, into three different semi-analytic models, namely the De Lucia and Blaizot version of the Munich model, MORGANA and the Menci model. We leave all other input physics and parameters unchanged. We find that the modification of the stellar population emission can solve the mismatch between models and the observed rest-frame K-band luminosity from the brightest galaxies derived from UKIDSS data at high redshift. For all explored semi-analytic models this holds at the redshifts - between 2 and 3 - where the discrepancy was recently pointed out. The reason for the success is that at these cosmic epochs the model galaxies have the right age (~1 Gyr) to contain a well-developed TP-AGB phase which makes them redder without the need of changing their mass or age. At the same time, the known overestimation of the faint end is enhanced in the K-band when including the TP-AGB contribution. At lower redshifts (z<2) some of the explored models deviate from the data. This is due to too short merging timescales and inefficient 'radio-mode' AGN feedback. Our results show that a strong evolution in mass predicted by hierarchical models is compatible with no evolution on the bright-end of the K-band LF from z=3 to the local universe. This means that, at high redshifts and contrary to what is commonly accepted, K-band emission is not necessarily a good tracer of galaxy mass.Comment: 10 pages, 5 figures, accepted by MNRA

    A Bayesian approach to the semi-analytic model of galaxy formation: methodology

    Get PDF
    We believe that a wide range of physical processes conspire to shape the observed galaxy population but we remain unsure of their detailed interactions. The semi-analytic model (SAM) of galaxy formation uses multi-dimensional parameterisations of the physical processes of galaxy formation and provides a tool to constrain these underlying physical interactions. Because of the high dimensionality, the parametric problem of galaxy formation may be profitably tackled with a Bayesian-inference based approach, which allows one to constrain theory with data in a statistically rigorous way. In this paper we develop a SAM in the framework of Bayesian inference. We show that, with a parallel implementation of an advanced Markov-Chain Monte-Carlo algorithm, it is now possible to rigorously sample the posterior distribution of the high-dimensional parameter space of typical SAMs. As an example, we characterise galaxy formation in the current Λ\LambdaCDM cosmology using the stellar mass function of galaxies as an observational constraint. We find that the posterior probability distribution is both topologically complex and degenerate in some important model parameters, suggesting that thorough explorations of the parameter space are needed to understand the models. We also demonstrate that because of the model degeneracy, adopting a narrow prior strongly restricts the model. Therefore, the inferences based on SAMs are conditional to the model adopted. Using synthetic data to mimic systematic errors in the stellar mass function, we demonstrate that an accurate observational error model is essential to meaningful inference.Comment: revised version to match published article published in MNRA

    Influence of Population III stars on cosmic chemical evolution

    Full text link
    New observations from the Hubble ultra deep field suggest that the star formation rate at z>7 drops off faster than previously thought. Using a newly determined star formation rate for the normal mode of Population II/I stars (PopII/I), including this new constraint, we compute the Thomson scattering optical depth and find a result that is marginally consistent with WMAP5 results. We also reconsider the role of Population III stars (PopIII) in light of cosmological and stellar evolution constraints. While this input may be needed for reionization, we show that it is essential in order to account for cosmic chemical evolution in the early Universe. We investigate the consequences of PopIII stars on the local metallicity distribution function of the Galactic halo (from the recent Hamburg/ESO survey of metal-poor stars) and on the evolution of abundances with metallicity (based on the ESO large program on very metal-poor stars), with special emphasis on carbon-enhanced metal-poor stars. Our most important results show that the nucleosynthetic yields of PopIII stars lead to abundance patterns in agreement with those observed in extremely metal-poor stars. In this chemical approach to cosmic evolution, PopIII stars prove to be a compulsory ingredient, and extremely metal-poor stars are inevitably born at high redshift. (Abridged)Comment: 11 pages, 7 figures, MNRAS in pres

    The impact of dark matter cusps and cores on the satellite galaxy population around spiral galaxies

    Get PDF
    (Abridged) We use N-body simulations to study the effects that a divergent (i.e. "cuspy") dark matter (DM) profile introduces on the tidal evolution of dwarf spheroidal galaxies (dSphs). Our models assume cosmologically-motivated initial conditions where dSphs are DM-dominated systems on eccentric orbits about a host galaxy composed of a dark halo and a baryonic disc. We find that the resilience of dSphs to tidal stripping is extremely sensitive to the halo cuspiness; whereas dwarfs with a cored profile can be easily destroyed by the host disc, those with cusps always retain a bound remnant. For a given halo profile the evolution of the structural parameters as driven by tides is controlled solely by the total amount of mass lost. This information is used to construct a semi-analytic code that simulates the hierarchical build-up of spiral galaxies assuming different halo profiles and disc masses. We find that tidal encounters with discs tend to decrease the average mass of satellites at all galactocentric radii. Interestingly, satellites accreted before re-ionization (z>6), which may be singled out by anomalous metallicity patterns, survive only if haloes are cuspy. We show that the size-mass relation established from Milky Way (MW) dwarfs strongly supports the presence of cusps in the majority of these systems, as cored models systematically underestimate the masses of the known Ultra-Faint dSphs. Our models also indicate that a massive M31 disc may explain why many of its dSphs fall below the size-mass relationship derived from MW dSphs. We use our models to constrain the mass threshold below which star formation is suppressed in DM haloes, finding that luminous satellites must be accreted with masses above 10^8--10^9 M_sol in order to explain the size-mass relation observed in MW dwarfs.Comment: 17 pages, 14 figures, MNRAS accepted after minor revisio
    corecore