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A Bayesian approach to the semi-analytic model of

galaxy formation: methodology

Yu Lu⋆, H.J. Mo, Martin D. Weinberg, Neal S. Katz

Department of Astronomy, University of Massachusetts, Amherst, MA 01003-9305, USA

ABSTRACT

We believe that a wide range of physical processes conspire to shape the ob-

served galaxy population but we remain unsure of their detailed interactions.

The semi-analytic model (SAM) of galaxy formation uses multi-dimensional

parameterizations of the physical processes of galaxy formation and provides

a tool to constrain these underlying physical interactions. Because of the high

dimensionality, the parametric problem of galaxy formation may be profitably

tackled with a Bayesian-inference based approach, which allows one to con-

strain theory with data in a statistically rigorous way.

In this paper, we develop a generalized SAM using the framework of

Bayesian inference. We show that, with a parallel implementation of an ad-

vanced Markov-Chain Monte-Carlo algorithm, it is now possible to rigorously

sample the posterior distribution of the high-dimensional parameter space of

typical SAMs. As an example, we characterize galaxy formation in the cur-

rent ΛCDM cosmology using stellar mass function of galaxies as observational

constraints. We find that the posterior probability distribution is both topo-

logically complex and degenerate in some important model parameters. It is

common practice to reduce the SAM dimensionality by fixing various param-

eters. However, this can lead to biased inferences and to incorrect interpre-

tations of data owing to this parameter covariance. This suggests that some

conclusions obtained from early SAMs may not be reliable. Using synthetic

data to mimic systematic errors in the stellar mass function, we demonstrate

that an accurate observational error model is essential to meaningful inference.

Key words: galaxies: formation — methods: numerical

⋆ E-mail: luyu@astro.umass.edu

c© 2010 RAS

http://arxiv.org/abs/1004.2518v1


2

1 INTRODUCTION

In our current paradigm of structure formation, the matter density of the Universe is domi-

nated by the cold dark matter (hereafter CDM), and galaxy formation is a two-stage process

(e.g. White & Rees 1978). First, small perturbations in the density field originating from

quantum fluctuations in the early universe grow and produce a population of virialized dark

matter halos. Second, the baryonic matter associated with these halos accumulates at the

halo centers due to cooling and cold flows, forming stars and galaxies. Because of the hi-

erarchical nature of structure formation in a CDM cosmogony, dark matter halos merge.

The halo mergers eventually lead to galaxy-galaxy mergers, resulting in the formation of

elliptical galaxies.

The first stage of this process, the formation and virialization of dark matter halos, has

been studied in great detail using the (extended) Press-Schechter formalism (e.g. Press & Schechter

1974; Bond et al. 1991; Lacey & Cole 1993), spherical and ellipsoidal collapse (e.g. Gunn & Gott

1972; Fillmore & Goldreich 1984; Bertschinger 1985; Sheth et al. 2001; Lu et al. 2006) and

numerical simulations (e.g. Efstathiou et al. 1985; Navarro et al. 1997; Bullock et al. 2001a,b;

Zhao et al. 2003a,b; Springel 2005; Macciò et al. 2007; Zhao et al. 2009). These studies have

yielded the mass function, spatial distribution, formation history, and internal structure of

the CDM halo population and serve as the backbone of study of galaxy formation. The knowl-

edge of the second stage of galaxy formation is far less well established, mainly because the

baryonic processes involved (cooling, star-formation and feedback) are poorly understood.

Additional physical processes whose importance is not fully understood include dynamical

friction, tidal stripping, black hole formation and accretion, and adiabatic contraction.

Hydrodynamic simulations can now be used to study galaxy formation and evolution

in a full cosmological context (e.g. Katz 1992; Navarro & White 1993; Kereš et al. 2005;

Oppenheimer & Davé 2006; Simha et al. 2009). However, computational power is still a

severe limitation at the present, and one has to compromise between simulation resolu-

tion and box size. Because of this, an alternative approach, the semi-analytical model of

galaxy formation, has been developed and widely adopted to study the statistical properties

of the galaxy population (e.g. White & Frenk 1991; Kauffmann et al. 1993; Mo et al. 1998;

Somerville & Kolatt 1999; Cole et al. 2000; Kang et al. 2005; Croton et al. 2006; Dutton & van den Bosch

2009). In the semi-analytical model (hereafter SAM), one adopts “recipes” to describe and

parameterize the underlying physical ingredients, such as star formation and feedback. The
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free parameters in the models are then tuned to reproduce certain observational data of the

galaxy population, such as stellar mass functions, color-magnitude relations, metallicity-

stellar mass relations, Tully-Fisher relation, and two-point statistics that describe the spa-

tial distribution of galaxies (e.g. two-point correlation function, pairwise peculiar velocity

dispersion, etc.). However, the theory of galaxy formation and evolution still faces several

outstanding problems (see Primack 2009, for an up-to-date review). For example, it remains

challenging to fit the faint-end slope of the galaxy luminosity function (e.g. Benson & Madau

2003; Mo et al. 2005), and the models typically predict disk rotation velocities that are

too high, unless adiabatic contraction and/or disk self-gravity are ignored (e.g. Cole et al.

2000; Dutton et al. 2007). In addition, the models have problems matching the evolution

of the galaxy mass function with redshift (e.g. De Lucia & Blaizot 2007; Somerville et al.

2008; Fontanot et al. 2009), and typically overpredict the fraction of red satellite galaxies

(Baldry et al. 2006; Weinmann et al. 2006; Kimm et al. 2009; Liu et al. 2010). There are

three main reasons for these problems. First and foremost, current models most likely miss

some vital ingredients or the recipes used do not properly implement the physical mechanism.

Secondly, sub-space features and degeneracies in the model parameter space have been either

missed or not sufficiently explored (Liu et al. 2010; Neistein & Weinmann 2009). Thirdly,

the difficulties may actually reflect inconsistencies in the data themselves (so-called “system-

atic” errors). For example, it has been pointed out that the observed evolution in the stellar

mass function is inconsistent with the observed cosmic star formation history (Fardal et al.

2007; Primack et al. 2008).

In order to address these problems, one must quantitatively characterize the model con-

straints implied by existing data sets as well as explore a wider range of models. The SAM

approach provides a promising avenue to tackle these problems owing to its flexibility in

implementation and its relatively fast speed in computation. However, significant changes

in the methodology must be made in order to fully utilize the potential of the SAM. The

main shortcoming in the current SAMs is that they are not probabilistically rigorous. In

many published SAM applications, a subset of model parameters is held fixed while other

parameters are adjusted to match some observational properties. If the match is unsatis-

factory, one further adjusts some of the parameters or changes the model parameterization

until a “good” fit is achieved. However, the goodness of fit is often assessed “by eye”; one

overlays the model prediction, a luminosity function for example, on the observed result to

see if the prediction is sufficiently close to the data. Since the statistical uncertainties in
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both the data and the model are not consistently computed, confidence levels do not follow.

Similarly, since the model parameters are explored by hand, marginal probability can not

be computed. As mentioned earlier, a number of physical processes in galaxy formation are

still poorly understood, and so the parameterizations of these processes have to be made

very general. This leaves a large parameter space to be probed. Given the high dimension-

ality of the parameter space and the complex covariance between parameters, it is almost

impossible to find and delineate the dominant mode by hand-tuning model parameters. For

example, if a good fit between model and data is not found, the relative significance of the

parameter region relative to others remains unknown. Third, since the model parameters

may be strongly covariant, the effect of changing one model parameter while keeping others

fixed is conditional to the values of other parameters that have been kept fixed. Therefore,

switching on and off a process in a fiducial model is unlikely to figure out its importance

to galaxy formation. Indeed, in order to investigate the influence of a specific recipe, one

should allow the parameters to range over all their entire a priori plausible domain. Un-

fortunately, this kind of analysis has been missing in the current SAMs. Fourth, because

many processes in galaxy formation are still poorly understood, different SAMs may adopt

different parameterizations for the same process. While all these models can be tuned to

match a limited set of observational data, it is difficult to judge which model is actually

preferred. In principle, each of the parameterizations should be considered as a subset of a

more general parameterization, and model selections should be made according to statistical

evidence. Again, such an analysis is not included in the current SAMs.

In summary, a variety of physical processes affecting galaxy formation are not yet well

understood while copious observational data constrain the models. Thus, in order to derive

meaningful constraints from observations, we would like to know the probability of the

various model parameters and, indeed, entire model families given the data. This leads

us directly to Bayesian inference! The semi-analytical model provides a very powerful tool

to translate the theory of galaxy formation into a set of model parameters. The Bayesian

approach will then allow us to obtain the posterior distribution of the model parameters for

a given set of data and to assess how a particular model is supported by the data. Moreover,

given different model families, Bayesian model comparison techniques such as Bayes Factors

and Reversible Jump techniques (Green 1995) allow one to determine the relative odds for

each model producing the observed data.

Some attempts have been made recently in this direction. For instance, Benson & Bower
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(2010) have performed an exhaustive search of model parameter space using Latin hyper-

cube sampling (Mckay et al. 1979) to find a region which reproduces good fit to partic-

ular observations. Bower et al. (2010) have explored the parameter space of GALFORM

model (Bower et al. 2006) using model emulator technique. Kampakoglou et al. (2008) and

Henriques et al. (2008) have adopted Markov-Chain Monte-Carlo (MCMC) technique to ex-

plore the capability of their adopted SAMs in accommodating multiple observational data

sets. However, since these authors considered only a very restricted set of models and a

subset of the total parameter space, their explorations are limited to specific cases, and no

general conclusions can be reached from them. Indeed, in order to overcome the shortcom-

ings in the current SAMs, one needs a general semi-analytical model with a wide range

of variations both in the parameterizations of physical processes and in model parameters,

and a rigorous Bayesian approach that can determine the posterior probability over a large

parameter space.

In this paper, we develop a scheme to incorporate SAM into the framework of Bayesian

inference. To this end, our parameterizations are designed so that the corresponding SAM

contains a number of published SAMs as subsets. This is important, because we want to ex-

plore a large model space while incorporating the findings of previous investigations. We also

show that, aided with advanced MCMC techniques and moderate computational facilities,

it is now possible to build a Bayesian inference-based SAM to efficiently explore the high

dimensional parameter space involved and to establish the posterior distribution of model

parameters reliably.

The goal of the present paper is a description of our approach and a demonstration of

key points with simple examples. We will illustrate the limitations of the conventional SAM

approach and the advantages of a Bayesian inference-based SAM. In particular, we will show

that the common practice of tuning some model parameters while keeping others fixed can

lead to an incorrect inference and that our Bayesian inference-based SAM overcomes this

problem. We will also demonstrate sensitivity of the resulting inference to error model for

data. The paper is organized as follows. In Section 2, we describe our generalized SAM and

its relations to other models. A brief introduction to the principle of the Bayesian inference

and the MCMC technique is presented in Section 3. In Section 4, we show a case study using

the stellar mass function of galaxies as the observational constraint. The impacts of prior

assumptions and data modeling on the model inference are presented in Section 5 and 6,

respectively. Finally, in Section 7, we discuss and summarize our main results.

c© 2010 RAS, MNRAS 000, ??–??
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2 SEMI-ANALYTIC MODEL

As all other SAMs, our model consists of two main parts, (i) the assembly of individual

dark matter halos, and (ii) gas, radiative and star-formation processes relevant to galaxy

formation. We first prepare a large set of halo merger trees with the currently favored

cosmology and adopt it for all subsequent semi-analytical modeling of the baryonic processes.

Since the formation of dark matter halos is now relatively well understood, we focus on the

baryonic physics in our Bayesian analysis.

2.1 Halo merger history

Halo merger trees can either be extracted from cosmological N -body simulations (e.g.

Kang et al. 2005; Croton et al. 2006), or generated by a Monte-Carlo method using the ex-

tended Press-Schechter formalism (Lacey & Cole 1993; Somerville & Kolatt 1999; Cole et al.

2000; van den Bosch 2002). Merger trees from simulations provide the dynamics and envi-

ronments of the halo population, but their construction is computationally expensive and

limited by numerical resolution. On the other hand, Monte-Carlo merger trees are compu-

tationally cheaper to generate and have, in principal, infinite resolution. In this paper, we

adopt the algorithm proposed by Parkinson et al. (2008) to generate the merger trees for

halos with a given final (z = 0) virial mass. This algorithm has been tuned to match the

conditional mass functions found in N -body simulations. More specifically, as an demon-

stration we choose the control parameters G0 = 1, γ1 = γ2 = 0, so that the resulting halo

conditional mass functions are those predicted by the Extended Press-Schechter conditional

mass function (Parkinson et al. 2008). We sample a certain number of merger trees in each

halo mass bin from 1010 h−1M⊙ to 1015 h−1M⊙, the mass range relevant to the modeling in

this paper. Since the halos and their merger trees are randomly sampled from the halo mass

function and the conditional mass function, the model prediction based on a finite merger

tree sample suffers from sampling variance. In order to reduce such sampling variance, we

generate a sufficiently large number of halo merger trees in each mass bin, so that the vari-

ance in the model prediction induced by merger-tree sampling is much smaller than the error

in the observational data used to constrain the model and can be ignored. Specificly, we use

1000 merger trees for halos with present masses in the range 1011 - 1012.5h−1M⊙, 1500 merger

trees in the range 1012.5 - 1013.5 h−1M⊙, 400 merger trees in the range 1010 - 1011 h−1M⊙,

and about 100 merger trees in the range 1013.5 - 1015 h−1M⊙. Since massive halos are rare
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in the assumed cosmology, their contribution to the scatter of the stellar mass function is

negligible. The mass resolution of merger tree changes with the final halo mass. For halos

with final masses smaller than 1012 h−1M⊙, the mass resolution is 109.3 h−1M⊙; for halos

with final masses larger than 1014 h−1M⊙, it is 10
11 h−1M⊙; and for the intermediate halos,

it is 1010 h−1M⊙. All merger trees are sampled at 60 snapshots equally spaced in log(1 + z)

from z = 7 to z = 0. Throughout the paper, we use a ΛCDM cosmology with ΩM = 0.26,

ΩB,0 = 0.044, h = 0.71, n = 0.96, and σ8 = 0.79, which are consistent with the WMAP5

data (Dunkley et al. 2009; Komatsu et al. 2009).

2.2 Radiative cooling

Once the halo formation history is fixed, we model the radiative cooling of halo gas. As

shown in Lu et al. (2010), the predictions of often-used cooling models do not agree. Since

these models do not incorporate uncertainties in their cooling prescriptions, the model choice

imposes a strong prior on the SAM. In order to compare with published results, our model

follows Croton et al. (2006). An analysis of varying the cooling prescription will be presented

in a future paper. In the Croton model, the halo hot gas is redistributed at every time-step,

and the density profile of the hot gas is assumed to be a singular isothermal profile,

ρgas =
mgas0

4πrvir
r−2,

where rvir is the virial radius of the halo. The total mass of hot halo gas mass is mgas0 =

fbmvir−
∑

i[m
i
∗+mi

cold+mi
out], where fb = Ωb/Ω0 is the universal baryon fraction, m∗, mcold

and mout are the masses in stars, cold gas and ejected gas, respectively, and the summation

is over all galaxies in the halo. The temperature of the hot gas is constant for each halo with

Tgas = Tvir = 35.9( vvir
kms−1 )

2K where vvir is the circular velocity of the halo at the virial radius.

The cooling timescale of the gas at radius r is then estimated by

τcool(r) =
3

2

µmHkTgas

ρgas(r)Λ(Tgas, Zgas)
, (1)

where µ is the mean molecular weight in units of the mass of hydrogen atom, and Λ is

the cooling function from Sutherland & Dopita (1993). At each time-step, we calculate the

cooling radius rcool by equating the cooling timescale with the dynamical timescale, τcool =

τdyn ≡ rvir/vvir. If the cooling radius is equal to or smaller than the virial radius, the cooling

rate is defined as

ṁcool = 0.5mhot
rcoolvvir
r2vir

. (2)

c© 2010 RAS, MNRAS 000, ??–??
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In words, half of the hot gas mass enclosed by the cooling radius cools and accretes onto the

central object of the halo in a dynamical timescale. If the cooling radius is larger than the

virial radius, we set the cooling rate equal to the total hot gas mass in the halo divided by the

dynamical timescale. We implicitly assume that all hot gas is associated with the primary

halo and only central galaxy can accrete cooling gas; that is, satellite subhalos contain no

hot gas.

In some recent SAMs, Active Galactic Nuclei (AGN) feedback reduces the gas cooling

in massive halos (e.g. Croton et al. 2006; Bower et al. 2006; Somerville et al. 2008). Equiv-

alently, AGN feed back stops radiative cooling for halos with masses larger than a char-

acteristic mass (∼ 1012 M⊙) (Cattaneo et al. 2006). To include this effect, we introduce a

characteristic halo mass for radiative cooling, MCC, above which radiative cooling of the hot

halo gas is assumed to be negligible. Since the exact value of MCC is not known a priori, we

treat it as a free parameter in a relatively large mass range, 1011.5 - 1014.5 h−1M⊙.

2.3 Star formation

We assume that the cooled-fraction of halo gas settles into the galaxy in an exponential disk

with scale length rdisc. This gas form stars when the gas disk has a surface density higher

than a certain threshold, ΣSF, mimicking the critical surface gas density for star formation

seen in disk galaxies (e.g. Kennicutt 1998; Kennicutt et al. 2007; Bigiel et al. 2008). The

fraction of cold gas above the threshold is given by the ratio of the radius rcrit at which the

cold gas density is ΣSF to the disk scale length:

rcrit/rdisc = ln
mcold

2πr2discΣSF
, (3)

where mcold is the total cold gas mass of the galaxy. Therefore, the cold gas mass enclosed

by rcrit is determined by the ratio r2discΣSF/mcold. Observationally, the threshold surface

density is ∼ 10 M⊙pc
−2 (e.g. Martin & Kennicutt 2001), although the scale length may

vary. Theoretically, the disk radius (the scale-length) is related to the virial radius and

the spin parameter of its host halo: rdisc ≈ λ√
2
rvir (e.g. Mo et al. 1998). In cosmological

N -body simulations, the spin parameters λ for dark matter halos follow a log-normal dis-

tribution with a median ∼ 0.05 (e.g. Warren et al. 1992; Cole & Lacey 1996), but the dis-

tribution of λ for the baryonic component that forms galaxy disks is poorly understood

(e.g. Bett et al. 2010; Navarro & Benz 1991). In our SAM, we adopt the fiducial value

λ0 = 0.05. This yields rdisc,0 = 0.035rvir and ΣSF,0 = 1 M⊙pc
−2. We then parameterize the

c© 2010 RAS, MNRAS 000, ??–??
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term r2discΣSF = fSFr
2
disc,0ΣSF,0. In the Croton et al. (2006) model, rdisc is set to be 3rdisc,0,

and ΣSF = 10M⊙pc
−2, so that fSF = 90.

Using on our parameterization, the cold gas mass on the disk available for star formation

is

msf = mcold

[

1−
(

1 + ln
mcold

2πfSFΣSF,0r2disc,0

)

2πfSFΣSF,0r
2
disc,0

mcold

]

. (4)

We take the star formation rate proportional to the cold gas mass within rcrit and inversely

proportional to the dynamical timescale of the disk, τdisc =
rdisc
vvir

, yielding

ṁ∗ = ǫ∗
msf

τdisc
, (5)

where ǫ∗ is the star formation efficiency. We assume that ǫ∗ has a broken power-law depen-

dence on the circular velocity of the host halo:

ǫ∗ =











αSF vvir ≥ VSF;

αSF

(

vvir
VSF

)βSF

vvir < VSF,
(6)

where αSF and βSF are parameters. Early models adopted a pure power-law until ǫ∗ ∼ 1

(e.g. Kang et al. 2005). The Croton et al. (2006) model assumes βSF = 0 and sets αSF so

that 5–15% of the cold gas is converted into stars in a disk dynamical time. The GALFORM

of Cole et al. (2000) considers cases with βSF = 0, 1.5 and 2.5. In our model, all the four

parameters, αSF, βSF, VSF and fSF, are considered as free parameters when modeling star

formation in quiescent disks.

2.4 Supernova feedback

We assume that supernova (SN) feedback affects the interstellar medium (ISM) and hot

halo gas in three ways: (i) the energy feedback from SN reheats a fraction of the disk ISM

from the cold phase to the hot phase, and the reheated gas is mixed with the hot halo gas;

(ii) a fraction or all of the heated gas is directly ejected from the host halo without mixing

with the hot halo gas; and (iii) if the SN energy from all galaxies in a halo is sufficiently

large, the hot gas in the host halo can be heated, causing a fraction of the halo hot gas to be

ejected from the halo. No SAM has incorporated all of these mechanisms and the strength

of the feedback is usually chosen without strong prior justification. For example, the Croton

model considered both mechanisms (i) and (iii) (Croton et al. 2006), while GALFORM

incorporated (i) and (ii) (Benson et al. 2003). In these models, the total amount of SN

feedback energy is assumed to be related to the star formation rate, and the feedback is
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assumed to be instantaneous. The feedback strength is controlled by a fixed number (e.g.

Croton et al. 2006) or assumed to have a power-law dependence on the circular velocity

of the host halo (e.g. Somerville & Kolatt 1999; Cole et al. 2000; Kang et al. 2005). Our

model incorporates all three mechanisms, and their relative strengths are free parameters.

We assume that for every solar mass of stars formed, the energy released by supernovae is

ηsnEsn, where ηsn is determined by the stellar initial mass function (IMF) and Esn = 1051erg.

Our feedback model enforces energy conservation, so that the total energy to heat the gas

cannot exceed the total energy released from supernovae.

We write the SN energy released by a mass of ∆m∗ of star formation as

Efb = αSN
1

2
∆m∗V

2
SN (7)

where VSN = 630km/s and the free parameter αSN describes the uncertainties in the feedback

energy and in the IMF. For a Scalo IMF (ηsn = 5 × 10−3) and with 20% of the SN energy

in feedback (e.g. Kang et al. 2005), we find αSN = 0.25. We allow αSN to vary from 0.001

to 10, encompassing the uncertainty of this parameterization. To conserve energy, the total

SN energy released by m∗ of star formation and available for feedback, Efb, should be equal

to the sum of the energies used for the reheating, ejection and powering the wind. Thus, we

can write

Efb =
1

2
(1− fej) frh∆m∗v

2
vir +

1

2
fejfrh∆m∗v

2
esc +

1

2
∆mwindv

2
esc, (8)

where the coefficients, frh and fej, control the mass loading for the reheating and ejection,

vesc is the circular velocity of the current host halo characterizing its binding energy, and

vvir is the circular velocity of the host halo at the latest time when it was still a primary

halo, characterizing the binding energy of the galaxy. Note that vesc 6= vvir only for a satellite

galaxies. We further assume that the fraction for reheating, frh, has a power-law dependence

on the circular velocity of the halo, vvir. If the galaxy is a satellite, we use the circular velocity

of its host halo when it first became a subhalo. So we have

frh = αRH

(

V0

vvir

)βRH

, (9)

where V0 is an arbitrary factor and is set to be 220 km/s. The power-law has an upper limit

given by energy conservation:

frh,max = αSN

(

VSN

vvir

)2

. (10)

When an amount of frh∆m∗ cold gas is reheated, we assume a fraction fej escapes from the
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halo. For simplicity, we assume fej has a power-law dependence of the circular velocity of

the current host halo:

fej = αEJ

(

V0

vesc

)βEJ

. (11)

Again energy conservation sets an upper limit on fej:

fej,max =

[

frh,max

frh
− 1

]

×
[

(

vesc
vvir

)2

− 1

]−1

. (12)

If there is still energy available after reheating and ejection, the surplus is assumed to power

a wind, and the mass of the wind can be written as

∆mwind = ǫW∆m∗

{

αSN

(

VSN

vesc

)2

− frh

[

(

vvir
vesc

)2

+ fej

]}

. (13)

We assume that a fraction of fRI of the gas in the outflow, ejection and wind will come back

to the halo as hot gas in a dynamical timescale, and we treat fRI as a free parameter.

Thus, we model the SN feedback with 7 parameters: αSN, αRH, βRH, αEJ, βEJ, ǫW and

fRI. Because the wind dominates the outflow, we find that αEJ and βEJ are not constrained

by the stellar mass function alone (see Section 4). Therefore we fix αEJ = 0 and βEJ = 0 in

the present paper.

2.5 Galaxy mergers

When two dark matter halos merge, we simply add the dark matter and hot gas of the

smaller halo to the bigger one. The central galaxy of the more massive halo is then treated

as the central galaxy of the new halo, and all other galaxies are considered as satellites. A

satellite galaxy merges into the central galaxy in some fraction fDF of the dynamical friction

timescale. The dynamical friction timescale is parameterized as

tfric =
1.17r2virvvir
lnΛGMsat

, (14)

where rvir and vvir are the virial radius and circular velocity of the new host halo, Msat is

the mass of the previous host halo of the satellite before it merges into the current halo,

and lnΛ is the Coulomb logarithm, which is modeled as ln Λ = ln(1 + Mvir/Msat) (e.g.

Croton et al. 2006). This formula assumes that the satellite galaxy is hosted by a subhalo

with mass Msat and orbits in a central halo with a singular isothermal density profile of

circular velocity vvir from the virial radius (Binney & Tremaine 1987). Earlier SAMs adopted

similar parameterizations, but used different prefactors. For example, some SAMs chose the

galaxy mass for Msat (e.g. Cole et al. 2000) and some others chose the subhalo mass for Msat
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(e.g. Croton et al. 2006); this results in an order of magnitude difference in the prefactor.

Other uncertainties include the value of the Coulomb logarithm, the effect of tidal stripping

on orbital decay, and the initial velocity of the satellite. In our model, these uncertainties

are absorbed into the prefactor, fDF, a free parameter.

The merging timescale is calculated when the host halo of the satellite merges into the

host halo of the central galaxy. If the satellite was already a satellite before the merger,

the dynamical fraction timescale for the satellite is recalculated based on the properties of

the new host. When a satellite galaxy merges into the central galaxy, our treatment for the

merger remnant depends on the mass ratio of the two galaxies, msat/mcentral. Mergers are

considered as a major or a minor merger depending on whether msat/mcentral is larger or

smaller than a pre-selected fMG < 1. The values of fMG adopted in earlier SAMs are ∼ 0.3.

As the choice of this parameter is not constrained by the stellar mass function of galaxies,

we simply take fMG = 0.3 instead of treating it as a free parameter.

For a minor merger (msat/mcentral ≤ 0.3), the satellite’s stars are added to the central

bulge, and the satellite’s gas is added to the central disk. A minor merger is assumed to

trigger a star-burst in the disk, and all the stars formed in the burst is added to the disk

component. For a major merger (msat/mcentral > 0.3), we combine all the existing stars from

the two merging galaxies into a central galaxy, which is now assumed to be an elliptical.

Each major merger triggers a star-burst, and all stars formed in the burst are added into

the central elliptical galaxy. A fraction eburst of the combined cold gas in the two merging

progenitors becomes stars, and the rest joins the gaseous disk. We assume that eburst depends

on the ratio of the baryon masses of the two galaxies: eburst = αburst(msat/mcentral)
βburst.

Similar models for galaxy mergers were adopted by Somerville et al. (2001, 2008) and

Croton et al. (2006) although different authors used different values for the model parame-

ters. In our model, the four parameters in the parameterization, fDF, fMG, αburst and βburst,

are all treated as free parameters. As mentioned above, since fMG is not constrained by the

stellar mass function considered in this paper, we simply fix its value to be 0.3.

2.6 Calculation of a single model

The flowchart shown in Figure 1 summarizes the calculation of the SAM described above.

The code loads merger trees and other tables (e.g. cooling functions, stellar mass-to-light

ratios for different star formation histories, and dust extinction) for subsequent calculations,
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and then reads the model parameters introduced above in this section (and summarized

in Table 1). Each of the merger trees is walked from the top (initial time) to the bottom

(present time). At each tree level, a galaxy grows in the center of a halo if the halo does not

have any progenitor halos. If the halo is assembled through the mergers of progenitor halos,

the central galaxy of the most massive progenitor is considered to be the central galaxy of

the current halo, and all other existing galaxies are considered to be satellites.

At the initial time, we distribute hot gas in dark matter halos and radiatively cooling

begins. We sub-divide each of the 60 time steps used to sample a merger tree into 5 finer

time steps (equally speced in t) to compute the cooling and to evolve galaxies. In every

time step, gas that is able to cool in the current time step is assigned to the central galaxy.

For all galaxies in the halo, star formation continues until the cold gas is exhausted as the

cold gas surface density goes below the threshold value. When a satellite galaxy merges

into a central galaxy, the recipes for the morphological transformation and merger-triggered

starburst are applied. For any star formation, quiescent- or burst-mode, the code calculates

the effect of SN feedback. Chemical evolution of the ISM is modeled by the “instantaneous

recycling approximation” (Cole et al. 2000): a fraction R of the newly formed stellar mass

and a yield p of heavy elements are instantaneously returned to and uniformly mixed with

the cold gas. Metals enrich the halo gas as the reheated gas mixes with the hot halo gas

(assuming a one-zone model, see Subsection 2.4) and affect the cooling rate. Both R and p

depend on the IMF. Since we have adopted a simplified model for gas cooling (see Subsection

2.2) and since the stellar mass function we are concerned here is affected by metallicity only

through gas cooling, in this paper we simply fix R = 0.3 and p = 0.03 instead of treating

them as free parameters. Our code uses the Stellar Population Synthesis (SPS) model of

Bruzual A. & Charlot (1993) and a dust model of Kauffmann et al. (1999) to assign fluxes

to galaxies.

The evolution continues until the root of the merger tree is reached. At this point, we

have a realization of the model specified by the set of parameters. The results obtained

from these realizations can then be used to compare with observational data to evaluate the

likelihood of the data given the model.
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Table 1. Model parameters

# Parameter Meaning Prior Posterior

[1.5, 4.5] [2.19, 2.67] [3.09, 4.47]
1 logMCC( M⊙) cooling cut-off halo mass [1.5 , 4.5] [2.13, 2.49] [3.15, 4.47]

[1.5, 4.5] [2.07, 2.49]

[-3, 0] [-2.19, -0.03]
2 logαSF star formation efficiency power-law amplitude [-3, 0] [-2.97, -2.85] [-1.47, -0.03]

[-3, 0] [-2.97, -2.49]

[-1, 12] [-0.87, 0.43] [3.29, 11.87]
3 βSF star formation efficiency power-law index [-0.2, 0.2] [-0.2, 0.2]

[-0.2, 0.2] [-0.2, 0.2]

[1.5, 3.0] [1.52, 2.39]
4 log VSF (km/s) star formation law turn-over halo circular velocity [2.1, 2.3] [2.1, 2.3]

[2.1, 2.3] [2.1, 2.3]

[-1, 3] [-0.96, -0.64] [-0.24, 2.16]
5 log fSF( M⊙/pc2) star formation threshold gas surface density [1.8, 2.2] [1.8, 2.2]

[1.8, 2.2] [1.8, 2.2]

[-3, 1] [-2.35, 0.85]
6 logαSN SN feedback energy fraction [-3, 1] [-1.35, -1.15] [-0.25, 1.05]

[-3, 1] [-1.75, 0.25]

[-3, 2] [-2.55, 1.95]
7 logαRH SN feedback reheating power-law amplitude [-3, 2] [-2.65, -0.75]

[-3, 2] [0.260, 1.22] [-0.75, 1.95]

[0, 14] [0.14, 13.86]
8 βRH SN feedback reheating power-law index [0, 14] [5.46, 11.62]

[1.8, 2.2] [1.8, 2.2]

[-3, 0] [-2.97, -0.15]
9 log ǫW fraction of surplus SN feedback energy used for powering wind [-3, 0] [-2.97, -0.81]

[-3, 0] [-2.97, -0.21]

[-2, 0] [-1.98, -0.02]
10 log fRI fraction of re-infall ejected hot gas [-2, 0] [-1.97, -0.03]

[-2, 0] [-1.94, -0.02]

[-1, 2] [0.53, 1.97]
11 log fDF merging time-scale in dynamical friction time-scale [-1, 2] [0.23, 0.59] [0.77, 1.97]

[-1, 2] [0.05, 0.65]

[-2, 0] [-1.98, -0.02]
12 logαSB merger triggered star burst efficiency power-law amplitude [-2, 0] [-1.97, -0.09]

[-2, 0] [-1.97, -0.15]

[0, 2] [0.02, 1.98]
13 βSB merger triggered star burst efficiency power-law index [0, 2] [0.02, 1.98]

[0, 2] [0.02, 1.98]

14 αEJ (fixed) SN feedback cold gas ejection power-law amplitude 0.0 0.0

15 βEJ (fixed) SN feedback cold gas ejection power-law index 0.0 0.0

16 fMG (fixed) major merger minor merger threshold 0.3 0.3
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3 BAYESIAN MODEL INFERENCE AND MCMC METHOD

3.1 Bayesian inference

Bayes Theorem states that the posterior probability of a set of parameters Θ in a model (or

hypothesis) H for given data D is

P (Θ|D, H) ∝ P (Θ|H)L(D|Θ, H), (15)

where P (Θ|H) is the prior probability distribution which describes the knowledge about the

parameters acquired before seeing the data, and L(D|Θ, H) is the likelihood of the data D

for the given model parameter set Θ. As mentioned earlier, for the problem we are tackling

here, the prior knowledge about the model parameters is limited. We therefore choose either

uniform or exponential distributions between two physically chosen bounds, depending on

the parameter in question. As a test, the priors for some of the parameters are made strongly

restrictive to demonstrate the sensitivity to these choices. The prior information is summa-

rized in Table 1. The problem-specific definition of the likelihood function is described in

later sections.

3.2 The Markov-Chain Monte-Carlo algorithm

It is not possible to integrate the posterior probability distribution function analytically for

our SAM. We resort to use a Monte-Carlo sampling approach to summarize the posterior

distribution. We adopt a newly developed software package, the Bayesian Inference Engine

(BIE, Weinberg 2010a,b), which includes a suite of advanced MCMC algorithms and sup-

ports parallel computation. As we will show later, the topological structure of the posterior

probability distribution in our problem is high-dimensional and very complex. Not only does

the posterior show multi-mode and strong degeneracy among model parameters, but also

the high-probability regions only occupy a very small fraction of the entire parameter space.

Because of these features, it is technically challenging to sample the posterior efficiently

with a standard Metropolis-Hastings MCMC algorithm. To expedite sampling and mixing,

we employ a multiple-chain differential evolution algorithm with tempering (Ter Braak 2006;

Weinberg 2010b). At each step, the algorithm randomly selects two other chains and uses

a fraction of the vector connecting the current states of the two chains as a proposal. This

strategy improves proposal efficiency and mixing by automatically “tuning” the proposals to

the ensemble of states comprising the individual chains. For a multi-dimensional Gaussian
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posterior, the optimized fraction of the vector is γ0 = 2.38/
√
Ndim, where Ndim is the di-

mension of the parameter space (Ter Braak 2006). Since our posterior is expected to deviate

significantly from a Gaussian, we use γ = 0.1γ0 to maintain a good acceptance rate (≈ 10%).

For every 10 steps, we use the full vector as the proposal by temporally setting γ = 1 to

allow chains to swap modes. As the simulation proceeds, the chains gradually settle into the

high probability regions and the distribution can guide the chains to move along the ridges

of the posterior or to jump between different modes. Moreover, all converged chains sample

the posterior, further enhancing the overall efficiency.

The standard differential evolution algorithm depends on the initial distribution of chains

for state-space exploration. Because the posterior distribution for our model is compact and

complex, tempered simulation algorithm (Neal 1996) is used to enhance the exploration

of state space. In short, tempered simulation proposes exchanges between the posterior

distribution of P0 and a “powered-up” distribution Pj ∝ P
1/Ti

0 with Ti ≤ Tmax. Each step

begins by “melting”, Ti+1 > Ti followed by “freezing”, Ti+1 < Ti. We perform a one tempered

step for every 21 standard steps, with the maximum temperature Tmax selected similar to

the difference in the logarithmic posterior probability between a high-probability region and

a low-probability valley: Tmax ≈ lnPmax/Pmin. In the temperature range from 0 to Tmax,

we set M temperature levels equally spaced in logarithmic scale. The default value of M

is set to be
√
Ndim + 3 lnTmax. For our problem, Ndim = 13 and we set Tmax = 64, so that

M = 16. At each temperature level Ti, 10 differential evolution steps are taken, with γ

stretched by a factor of T
1/2
i . In total, it takes 320 differential evolution steps for a chain to

go through the “melting” and “freezing” procedure for a single tempered step. Therefore,

employing the tempered simulation steps significantly increases the computational load.

However, the tempered simulation steps substantially improve the exploration of state space

and dramatically speed up convergence.

3.3 A Bayesian-inference based SAM

The structure of our Bayesian-inference based SAM is outlined by Figure 2. The MCMC al-

gorithm provides proposal parameter vectors for the SAM, and the SAM predicts the galaxy

population using the proposed parameter set. The likelihood is evaluated by comparing the

model prediction with data, and is returned back to the MCMC. The MCMC algorithm

accepts or rejects the proposal based on the posterior probability, and generates a new pro-
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posal for the SAM. The MCMC-SAM loop continues until convergence is achieved. The

convergence of the chains is monitored by the Gelman-Rubin R̂ statistic (Gelman & Rubin

1992). In essence, R̂ is the ratio of the variance between chains to the variance within

chains. We declare convergence when R̂ ≤ 1.2. When the chains are converged, we use post-

convergence states (typically about 106) to study and characterize the posterior distribution.

The converged states sample the full probability distribution of the model parameters given

observational data, and can be used to estimate confidence regions for individual model-data

comparison through marginalization and determine the relative posterior odds for different

models. In the following sections, we use a simple example to demonstrate the power of our

Bayesian-inference based SAM.

4 POSTERIOR OF THE SAM FOR STELLAR MASS FUNCTION

In this paper, we consider constraints on our SAM implied by the stellar mass function of

galaxies, a fundamental property of the galaxy population that has been extensively used

for model–data comparison. We choose the stellar mass function instead of the luminosity

function simply because the stellar mass of galaxies is a direct prediction of our SAM,

without the uncertainties in the stellar population synthesis model. However, these same

uncertainties are present in the reduced data, since a stellar population synthesis model was

used to convert the observed galaxy luminosities into stellar masses. These uncertainties

should in principle be properly included in the error budget of the observational data, and

we will examine the impact of incorrect error models on the Bayesian inference.

We study the constraints on the 13 free parameters characterizing our SAM (see Table

1) using the stellar mass function of Bell et al. (2003). Assuming that stellar mass bins are

mutually independent, the likelihood function is

L(Φobs|θ) = L0 exp

{

−
∑

i

[Φi,obs − Φi,mod(θ)]
2

2σ2
i,obs

}

, (16)

where L0 is an arbitrary normalization factor, Φi,obs is the value of the observed stellar

mass function in the ith bin, Φi,mod is the corresponding value predicted by the model with

the given parameter set θ, and σ2
i,obs is the variance of the observed stellar mass function.

The error estimation of Bell et al. (2003) only takes into account the sampling error, but

we expect significant bias (systematic uncertainty) from assumptions made in the data

reduction. To mimic the effect of large systematic uncertainty, we artificially inflate the

statistical error bars by a factor of 3. Please note, we are not advocating this procedure,
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rather, we argue this is a very bad thing to do in general for at least two reasons: (i) this tends

to imply greater support for a model than is truly admitted by the data, and conversely,

tends to reduce the ability of the data to choose between competing hypotheses; and (ii)

inflated error may hide serious problem with the data or inconsistencies with other data.

Strictly speaking, the Bayesian approach applies equally well to systematic uncertainty as

to sampling error. Mathematically, let systematic uncertainties be described by a parameter

vector η. The likelihood now depends on η through Φi,obs(η). We simply define a prior

distribution for the uncertainty P (η) by expert opinion or through an ancillary calibration.

The inference continues as before, now with the augmented parameter vector Θ = (θ, η).

In the end, we simply marginalize over η. For our problem specifically, we are aware our

error inflation produce is ad hoc and does not correctly represent the bin-to-bin covariance

in Φi,obs induced by the stellar mass function. We will discuss how such covariance affects

our results in Section 6. We will perform a luminosity function-based inference using a

population synthesis model and an appropriately chosen prior uncertainty in a future paper.

However, the lack of a stellar mass function with a suitably described error model forces us

to made a crude error model approximation for the point of illustration in the next section.

In addition, our Monte-Carlo evaluation of Φi,mod has variance. However, it is typically 3

times smaller than that in the data and, therefore, not explicitly included in equation (16).

4.1 Physical implications

Figure 3 shows the one- and two-dimensional marginalized posterior probability distributions

of the 13 free parameters. Three of these parameters, fRI, αSB and βSB, are unconstrained

by the stellar mass function and not shown. In the upper-right corner of the figure, we plot

the predicted stellar mass function by marginalizing over the 95% confidence range of the

posterior. Clearly, the stellar mass function is well reproduced by the model. Table 1 lists

the 95% confidence bounds of all parameters.

The strength of the constraint varies widely. Some parameters are weakly constrained:

for example, ǫW, the efficiency of SN feedback powering galactic wind, is very weakly con-

strained. In contrast, some parameters are tightly constrained: for example, VSF is con-

strained to a narrow range (around ∼ 160km/s), so are βSF (around 6) and βRH (around 8).

Our inferred values of βSF and βRH are much higher than those adopted in previous analyses.

The posterior indicates a sharply suppressed star formation efficiency in halos with circular

c© 2010 RAS, MNRAS 000, ??–??



BIE-SAM 19

velocities below ∼ 160km/s. In addition, the posterior distribution in the βSF - βRH plane

reveals bimodality: either the star formation efficiency or the SN reheating efficiency is a

steep power-law of halo circular velocity. In other words, the shallow slope of the stellar

mass function at the low-mass end requires the suppression of star formation in small halos.

Since star formation efficiency directly controls the conversion of cold gas to stellar mass,

high βSF mode dominates high βRH mode. We are unsure whether or not such high values

of βSF and βRH are physical plausible. It is likely that some new physics in addition to SN

feedback is required to suppress star formation in low-mass halos, as we will demonstrate in

detail in a forthcoming paper.

Some model parameters are strongly correlated. These include the following pairs of

parameters: fSF–αSF; αRH–βRH; and MCC–fDF. Both αSF and fSF control the conversion

of cold gas to stars and the degeneracy is expected. Similarly, the two parameters in the

power-law parameterization of the SN reheating, αRH and βRH, are degenerate. And again,

the parameters controlling the two mechanisms responsible for the formation of central

galaxies in massive halos, MCC and fDF are correlated; massive central galaxies can either

acquire their mass through gas cooling and in situ star formation, or through accretion of

satellite galaxies. The observed sharp decline of the stellar mass function at the high-mass

end requires either the AGN feedback be strong so that gas cooling and star formation in

halos more massive than ∼ 1012M⊙ is effectively quenched, or the merger rate of satellite

galaxies into a central galaxy by dynamical friction be slow.

4.2 Structure of the posterior distribution

The two-dimensional posterior distributions shown in Figure 3 are marginalized over 11

dimensions and wash out much of the intrinsic sub-dimensional structure that complicates

the inference and renders unreliable tweaking by hand. To demonstrate this, Figure 4 shows

some two-dimensional cuts through the posterior distribution. These cuts are made in the

αSF–αRH plane at four different values of fSF after the posterior is first marginalized over

the other 10 dimensions. The posterior distribution changes dramatically with fSF, from

horizontally oriented at log(fSF) ∼ 2.2, to vertically oriented at log(fSF) ∼ 0.5. These

suggest that the posterior is significantly more complex than the marginalized distributions

shown in Figure 3. The fine structure and complex topology of the posterior also make it

clear that it is extremely difficult to find the bast fit by tuning model parameters by hand.
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It also explains why it is computationally challenging to properly sample the posterior. For

example these results required approximately 5× 104 2GHz Opteron CPU hours.

5 THE IMPACT OF PRIOR CHOICE

In this section, we study the affect of the prior distribution on the final inference by selectively

applying narrow prior distributions in some dimensions. This mimics the practice of fixing

some model parameters. In Case 1, three of the 13 parameters are given narrow priors. The

value of βSF is limited to the narrow range [−0.2, 0.2], to mimic a flat power-law for star

formation efficiency adopted in some earlier SAMs (e.g. Croton et al. 2006). The parameter

VSF has little effect so we set log(VSF/km s−1) in the narrow range [2.1, 2.3]. Furthermore,

we assign a narrow prior, [1.9, 2.1], to log fSF, corresponding to the choice Σsf ≈ 10 M⊙/pc
2

and rdisc ≈ 3rdisc0 that is often used in previous models (e.g. Croton et al. 2006). All other

prior distributions are the same as in the fiducial case considered §4 (Case 0). The resulting

marginalized posterior distribution in Figure 5 shows that the distribution in all parameters

becomes more compact. The improvement of prior information on some parameters not only

tightens the constraints on those parameters themselves but can also help break degeneracy

in other dimensions. For example, since the star formation law is restricted to have weak

dependence on halo mass, the efficiency of SN reheating is forced to be a steep power-law of

halo circular velocity. For the same reason, degeneracies of other parameters with βRH are

all reduced. Note that the restrictive prior is not located near the dominant posterior mode

in Case 0 (cf. Fig. 3). Moreover, the bulk of the Case 1 posterior has very low probability in

the Case 0 posterior. Nevertheless, the quality of the fit does not change much, as one can

see from the reproduced stellar mass functions shown in the upper-right panel of the plot.

This illustrates the danger in fixing the values of parameters to plausible values especially

when there is no prior reason for a strong constraint.

Case 1 requires that the SN feedback is a very steep function of the halo circular ve-

locity when the star formation efficiency is forced to change slowly with halo mass. Early

SAMs (e.g. Kauffmann et al. 1999; Kang et al. 2005) assumed a weak dependence of the

SN feedback on halo mass (βRH ∼ 2) and concluded that the number of faint galaxies are

over-predicted if βSF ∼ 0. However, whether or not a good fit can still be obtained by chang-

ing other parameters while keeping βSF ∼ 0 and βRH ∼ 2 requires a full exploration of the

high-dimensional parameters space. Case 2 addresses this question by imposing the addi-
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tional prior restriction, βRH ∈ [1.8, 2.2], and in Figure 6 we show the resulting marginalized

distributions. The modes have moved substantially with respect to those in Case 1. To com-

pensate for the weakened SN reheating in small halos due to the assumed weak dependence

of SN reheating on halo circular velocity, the model employs a much lower efficiency for star

formation and a larger reheating amplitude; the mode moves from the lower-right to the

upper-left in the logαSF − logαRH plane. For similar reasons, the posterior mode in other

dimensions also change.

The posterior-weighted stellar mass function is shown in the upper-right panel of Figure

6. Even though the power indices βSF and βRH are fixed to low values, the model can still

reproduce the observed stellar mass function. This illustrates the importance of carefully

specifying the prior distribution for each parameter, especially when a parameter is weakly

constrained, and the necessity for fully characterizing the posterior distribution over its full

domain.

In summary, the results obtained in this section show that assigning restrictive prior

distributions to some parameters can significantly reduce the volume of the parameter space

and tighten the constraints on all parameters in galaxy formation models. This has two

important implications. Firstly, any prior knowledge, either from observation or physical

consideration, can help model inference and hence improve our understanding of galaxy

formation. Secondly, it is very dangerous to use unsubstantiated priors to fix model param-

eters. Since parameters are most likely correlated, fixing one parameter incorrectly can lead

to erroneous inference for all other parameters.

6 THE IMPACT OF ERROR MODEL

The observational error model directly influences the value of likelihood and the shape of the

cost function in parameter space. However, the impact of error model has not been carefully

considered in SAMs. In this section, we explore the effect of incorrect error estimates on the

resulting inference.

Astronomers traditionally differentiate two kinds of errors, statistical errors and sys-

tematic errors. Statistical errors result from well-understood processes with known parent

distributions (e.g. sampling error) while systematic errors come from the underlying assump-

tions made for the measurements. From the Bayesian context, a systematic error is the result

of poor prior information and often results in bias. For the stellar mass function considered
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here, the total error budget consists of the independent statistical errors of individual stellar

mass bins due to the finite number of galaxies used in estimating the stellar mass function,

and systematic errors, which arise from the uncertainties of the stellar population synthetic

model used to estimate the stellar mass from the observed luminosity. These uncertainties

correlate the bins. For example, the uncertainty in the assumed IMF will increase or decrease

stellar masses of all galaxies in the same sense.

When errors in different mass bins are correlated, the likelihood function may be ap-

proximated as follows:

L(Φobs|θ) =
L0 exp[−1

2
(Φobs −Φmod)

T ·Σ−1 · (Φobs −Φmod)]

(2π)I/2|det(Σ)|1/2 , (17)

whereΦobs andΦmod are the vectors of the observed and predicted stellar mass functions over

the stellar mass bins, Σ is the covariance matrix that describes the correlated error model,

and I is the rank of the covariance matrix. For independent errors, all the off-diagonal terms

vanish and the likelihood reduces to Eq.(16).

To test the effect of correlated error, we construct a synthetic stellar mass function with

correlated errors that mimic the systematic uncertainties in real observation. We choose

a truncated series of Chebyshev polynomials to represent the observed stellar mass func-

tion. The low-order coefficients specify the overall shape of the function, while the higher

orders characterize small scale features. We find that Chebyshev polynomials up to order

4 nicely fits the logarithmic stellar mass function, log Φ(logm∗); the best-fit coefficients are

[−4.17,−1.26,−0.516,−0.274,−0.114]. We choose the standard deviations of these coeffi-

cients [0.05, 0.10, 0.12, 0.08, 0.03] to represent the correlated uncertainties in the measure-

ments. Then, we calculate the covariance matrix of this synthetic data using 1000 Monte

Carlo realizations of Chebyshev polynomials and use synthetic data and the derived covari-

ance matrix to constrain the parameters in our SAM.

Figure 7 compares the marginalized posteriori for four pairs of model parameters obtained

with the full covariance matrix (upper panels) and those obtained with the diagonal terms

only (lower panels). Removing off-diagonal terms is equivalent to ignoring covariance. Clearly

the contours produced with the full covariance matrix are more compact. This is expected

because the correlation of error between different bins implies that the total independent

error in the data is smaller. There are also noticeable changes in the shape and the orientation

of the posterior distribution, indicating that it is important to model the covariance of the

data properly in order to make correct model inferences.
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7 SUMMARY AND DISCUSSION

Many of the physical processes parameterized in semi-analytical models of galaxy formation

remain poorly understood and under specified. This has two critically important conse-

quences for inferring constraints on the physical parameters: 1) prior assumptions about the

size of the domain and the shape of the parameter distribution will strongly affect resulting

inference; and 2) a very large parameter space must be fully explored to obtain an accurate

inference. Moreover, both must be done together. Both of these issues are naturally tackled

with a Bayesian approach that allows one to constrain theory with data in a probabilistically

rigorous way. In this paper, we have presented a semi-analytic model of galaxy formation

in the framework of Bayesian inference and illustrated its performance on a test problem.

Our sixteen-parameter semi-analytic model incorporates the most commonly used parame-

terizations of important physical processes from existing SAMs including star formation, SN

feedback, galaxy merger, and AGN feedback. We combined this model with the Bayesian

Inference Engine developed at UMass. The BIE is an extensible MPI-based software pack-

age for developing, testing and running advanced Markov-Chain Monte-Carlo algorithms on

large data sets. The resulting tool allows the exploration of the posterior distribution of a

large number of model parameters, and to constrain models over multiple data sets in a

statistically rigorous way.

To demonstrate the power of this approach, we used the observationally derived stellar

mass function of galaxies to constrain a number of important model parameters. We find that

the posterior distribution has very complex structure and topology, indicating that finding

the best fit by tweaking model parameters is improbable. Thus, some of the conclusions

drawn previously with the conventional SAM approach are most likely invalid. Moreover,

the posterior clearly shows that many model parameters are strongly covariant, and therefore

the inferred value of a particular parameter can be significantly affected by the priors used for

other parameters. As a consequence, one may not tune a small subset of model parameters

while keeping other parameters fixed and expect a valid result. This erroneous procedure

ignoring the large uncertainties in the parameters that are fixed and is equivalent to imposing

strong restrictive priors without scientific motivation. We have demonstrated here that this

practice can lead to biased inferences and wrong interpretation of observational data. Finally,

with the use of synthetic data to mimic systematic uncertainties in the reduced data, we

have shown that resulting model parameter inferences can be significantly affected by the
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use of incorrect error model. This clearly demonstrates that an accurate analysis of error

(both sampling error and systematic uncertainties) is a crucial part in observational data,

and conversely, a data-model comparison without an accurate error model is likely to be

erroneous.

The method developed here can be straightforwardly applied to other data sets and to

multiple data sets simultaneously. Large galaxy surveys available now and in the near future

will provide many more data sets to characterize the properties of the galaxy population

not only at the present time but also at high redshifts. The Bayesian-inference based SAM

described in this paper provides a framework for parameter estimation (e.g constraining

the parameters in theoretical models given particular data sets), for hypothesis testing (e.g.

comparing the support for particular models given the data), and for predicting the power

of new observations to constraining models of interest. In addition, the Bayesian approach

explicitly builds on previous results by incorporating the constraints from previous inferences

into new data sets; the Bayesian Inference Engine is designed to do this automatically. The

approach developed here will produce probabilistically rigorous constraints on theoretical

models, and facilitate understanding underlying physical processes that shapes the observed

galaxy population. For many processes in galaxy formation, competing models have been

proposed but not quantitatively compared. The marginalized likelihood or Bayes Evidence,

which can be directly derived from the posterior, and explicit model comparison techniques,

such as the reversible jump algorithm (Green 1995), can provide a quantitative comparison

between different models for given data. The Bayesian hypothesis test can therefore be used

to discriminate models. Finally, the prediction for an observable including the inferential

uncertainties can be obtained by marginalizing over the posterior. Such predictions can be

used to assess the power of new observations. In a series of forthcoming papers, we will use

the scheme developed here to make inferences from various data sets, focussing on a number

of aspects discussed above.
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Figure 1. Flow chart describing the calculation of the semi-analytic model of galaxy formation. The parameters explored in
the present paper are listed in the corresponding blocks.

c© 2010 RAS, MNRAS 000, ??–??



30

Figure 2. A flow chart describing the structure of our Bayesian-inference based semi-analytic model.
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Figure 3. The marginalized posterior distribution for key parameters for our fiducial run (Case 0). The color coding represents
confidence levels as shown by the color-bar on the top of the figure. The horizontal bars in the one-dimensional marginals
indicate the 95% confidence interval. The observed stellar mass function of galaxies (black line and error bars) from (Bell et al.
2003) together with the marginalized model prediction is inset. The red solid line shows the median value of the prediction,
while the yellow shaded region represents the 95% confidence interval.
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[]

Figure 4. Four two-dimensional slices of the marginalized posterior at log fSF = 2.2, 1.7, 1.3 and 0.5 with thickness ±0.3. This
figure demonstrates that the breadth of the marginalized distribution (cf. Fig. 3) is mainly due to projection. The structure of
the posterior in the 13-dimensional parameter space is dramatically more compact and more complex than the marginalized

posterior.

c© 2010 RAS, MNRAS 000, ??–??



BIE-SAM 33

Figure 5. The marginalized posterior distribution for key parameters in Case 1.Very restrictive priors are assumed for the
parameters, βSF, VSF and fSF, whose central values are indicated by magenta lines.
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Figure 6. The marginalized posterior distribution of key parameters for Case 2. This includes the restrictions of Case 1 as in
Fig. ?? with the additional restrictive prior for βRH.
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Figure 7. A comparison of the posterior distribution obtained for a likelihood function including covariance (upper row, eq.
17), and using only the diagonal terms of the covariance matrix (lower row).
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