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ABSTRACT
The Wang–Silk approximation, Q−1 ≈ Q−1

stars + Q−1
gas, is frequently used for estimating the

effective Q parameter in two-component discs of stars and gas. Here we analyse this ap-
proximation in detail, and show how its accuracy depends on the radial velocity dispersions
and Toomre parameters of the two components. We then propose a much more accurate but
still simple approximation for the effective Q parameter, which further takes into account the
stabilizing effect of disc thickness. Our effective Q parameter is a natural generalization of
Toomre’s Q, and as such can be used in a wide variety of contexts, e.g. for predicting star
formation thresholds in galaxies or for measuring the stability level of galactic discs at low
and high redshifts.

Key words: instabilities – stars: kinematics and dynamics – ISM: kinematics and dynamics
– galaxies: ISM – galaxies: kinematics and dynamics – galaxies: star formation.

1 IN T RO D U C T I O N

It is well known that both stars and cold interstellar gas play an im-
portant role in the gravitational instability of galactic discs (e.g. Lin
& Shu 1966; Jog & Solomon 1984a,b; Bertin & Romeo 1988, and
references therein). The local stability criterion for two-component
discs of stars and gas can be expressed in the same form as the
Toomre (1964) stability criterion, Q ≥ 1, provided that Q is rede-
fined appropriately. Bertin & Romeo (1988), Elmegreen (1995), Jog
(1996), Rafikov (2001) and Shen & Lou (2003) calculated the effec-
tive Q parameter as a function of the radial velocity dispersions and
surface mass densities of the two components. Shu (1968), Romeo
(1990, 1992, 1994) and Wiegert (2010) evaluated the stabilizing
effect of disc thickness, which is usually neglected but significant.

As galactic discs contain both stars and gas, the effective Q
parameter is clearly more accurate and useful than Toomre’s Q.
Bertin et al. (1989a,b) and Lowe et al. (1994) showed that the
radial profile of this parameter has a large impact on the dynamics
and evolution of spiral structure in galaxies. The results of those
comprehensive analyses are discussed further in the books by Bertin
& Lin (1996) and Bertin (2000). The effective Q parameter is also a
useful diagnostic for exploring the link between disc instability and
star formation in galaxies (e.g. Hunter, Elmegreen & Baker 1998;
Li, Mac Low & Klessen 2005, 2006; Yang et al. 2007; Leroy et al.
2008). More applications and references are given below.

�E-mail: romeo@chalmers.se

Wang & Silk (1994) proposed a remarkably simple recipe for
computing the effective Q parameter in the case of infinitesimally
thin discs: Q−1 ≈ Q−1

� + Q−1
g , where Q� and Qg are the stellar

and gaseous Toomre parameters. Bertin (private communication)
points out that such an approximation was already used by him,
before the 1990s, for illustrating the efficiency of a small amount
of cold gas to destabilize a disc (see also Bertin 1996; Bertin &
Lin 1996). Jog (1996) pointed out that the Wang–Silk approxima-
tion is invalid since it results from an incorrect analysis. In spite
of that, the Wang–Silk approximation has been used in several im-
portant contexts: star formation (e.g. Martin & Kennicutt 2001;
Boissier et al. 2003; Corbelli 2003; Wong 2009), galaxy forma-
tion and evolution (e.g. Immeli et al. 2004; Naab & Ostriker 2006;
Kampakoglou & Silk 2007; Stringer & Benson 2007; Wetzstein,
Naab & Burkert 2007; Foyle, Courteau & Thacker 2008; Benson
2010), gravitational instability of clumpy discs at low and high
redshifts (e.g. Bournaud & Elmegreen 2009; Burkert et al. 2010;
Puech 2010) and others (e.g. Hitschfeld et al. 2009; Wong et al.
2009).

In spite of such a burst of applications, there has been no attempt
to assess how good the Wang–Silk approximation is. In this paper,
we evaluate its accuracy by performing a rigorous comparative anal-
ysis (see Section 2.1). Besides, we introduce a new approximation
for the effective Q parameter: simple, accurate and applicable to re-
alistically thick discs (see Sections 2.2 and 2.3). We also show how
to use our effective Q parameter for measuring the stability level of
galactic discs, and why such a diagnostic is more predictive than
the classical Toomre parameter (see Section 2.4). The conclusions
of our paper are drawn in Section 3.
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2 A PPROX IMATING THE EFFECTIVE Q

2.1 Disc instability and the Wang–Silk approximation

Wang & Silk (1994) investigated the link between star formation
and disc instability in galaxies. They reconsidered the two-fluid
dispersion relation of Jog & Solomon (1984a), which is valid for
infinitesimally thin discs of stars and gas, and found that the effective
Q parameter can be approximated as follows:

1

QWS
= 1

Q�

+ 1

Qg
, (1)

where Q� = κσ�/πG�� and Qg = κσg/πG�g are the stellar
and gaseous Toomre parameters. This approximation is appealing
because it is as simple as the formula for the total resistance in a
parallel circuit. To evaluate the accuracy of equation (1), we rewrite
it as QWS = Q�/QWS, where

QWS = 1 + Q�

Qg
. (2)

The local stability criterion, QWS ≥ 1, translates into Q� ≥ QWS.
This is of the same form as the local stability criterion found
by Bertin & Romeo (1988); see also Romeo (1985). Bertin &
Romeo (1988) determined the stability threshold QBR numeri-
cally, starting from the same dispersion relation as Wang & Silk
(1994) but without introducing further approximations. In contrast
to QWS, QBR depends on two parameters: σ g/σ � and �g/��. Since
�g/�� = σ gQ�/σ �Qg, we can easily express QBR in terms of

s ≡ σg

σ�

, q ≡ Qg

Q�

. (3)

We can then compare QWS(q) with QBR(s, q) and evaluate the
accuracy of the Wang–Silk approximation as a function of s and q.

Let us first see how spiral galaxies populate the (s, q) plane.
We use the 12 nearby star-forming spirals analysed by Leroy et al.
(2008), namely NGC 628, 2841, 3184, 3198, 3351, 3521, 3627,
4736, 5055, 5194, 6946 and 7331. These are galaxies with sensitive
and spatially resolved measurements of kinematics, gas surface
density and stellar surface density across the entire optical disc.
For each galaxy of this sample, we compute the radial profiles
s = s(R) and q = q(R), and hence the track left by the galaxy
in the (s, q) plane. The result for the whole sample is shown in
Fig. 1. The data span a range of two orders of magnitude in s and
q, so we show them using a log–log plot. The typical value of s can
be robustly estimated by computing the median of the data points
along s, which is smed � 0.27. This value is comparable to that found
in the solar neighbourhood (s ≈ 0.2; see Binney & Tremaine 2008,
p. 497), but is much smaller than that expected in high-redshift
star-forming galaxies (s ∼ 1; e.g. Burkert et al. 2010; Krumholz &
Burkert 2010). The median value of q, qmed � 1.5, is close to unity.
This suggests that, on average, stars and gas contribute equally to the
gravitational instability of the disc. Similar values of q are found in
the solar neighbourhood (q ≈ 0.6; see Binney & Tremaine 2008, p.
497), and are also expected at high z (q ∼ 1; e.g. Burkert et al. 2010;
Krumholz & Burkert 2010; Tacconi et al. 2010).1 Last but not least,

1 Hereafter we will use smed and qmed, i.e. the median values of s and q
computed from the galaxy data of Leroy et al. (2008), for estimating the
typical accuracy of the Wang–Silk approximation and of our approximation.
This is meant to be a complement to the detailed error maps shown and
discussed throughout the paper. We do not ‘hint that the stability properties
can be characterized by a median value of an effective Q parameter’.

Figure 1. The parameter plane populated by nearby star-forming spirals.
The galaxy data are from Leroy et al. (2008), Q� and Qg are the stellar and
gaseous Toomre parameters, σ� and σ g are the radial velocity dispersions
of the two components. The shaded part of the (s, q) plane is the two-phase
region discussed in the text. The dispersion relation ω2(k) has two minima
inside this region, and one minimum outside it. The transition between the
gaseous and stellar stability phases occurs for q = 1. This line intersects the
boundaries of the two-phase region at (s, q) � (0.17, 1), where the stability
threshold is QBR � 1.4.

note that 20 per cent of the data fall within the shaded part of the (s,
q) plane. This is the ‘two-phase region’ of Bertin & Romeo (1988),
here shown using our parametrization and logarithmic scaling. In
this region, the contributions of stars and gas to the gravitational
instability of the disc peak at two different wavelengths. If q < 1,
then the gaseous peak is higher than the stellar one and gas will
dominate the onset of gravitational instability. Vice versa, if q > 1,
then stars will dominate. These are the gaseous and stellar stability
‘phases’ shown in Fig. 1. In the rest of the parameter plane, the
dynamical responses of the two components are strongly coupled
and peak at a single wavelength. More information is given in
section 3.2.2 of Romeo (1994).

Fig. 2 shows the contour maps of QBR and QWS (left-hand panel),
and the error map of QWS (right-hand panel). Remember that Q

denotes the stability threshold, i.e. the value of Q� above which the
two-component disc is locally stable, while Q = Q�/Q denotes
the effective Q parameter. Both stability thresholds are above unity
and converge to 1 + q−1 as s → 1. The first property means that
a disc of stars and gas can be gravitationally unstable even when
both components are separately stable, as is well known (e.g. Lin
& Shu 1966). The second property simply means that stars and gas
act as a single component when they have the same radial velocity
dispersion, so that Q = κσ/πG(�� + �g). Apart from satisfying
those properties, the two stability thresholds are clearly different.
Look in particular at the contour levels 1.1–1.4 of QBR. Their slope
changes abruptly across the line q = 1, revealing the existence
of two stability phases. As discussed in the previous paragraph,
this is an important characteristic of two-component discs, which
QWS fails to reproduce. From a quantitative point of view, the error
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The effective stability parameter for two-component galactic discs 1193

Figure 2. Accuracy of the Wang–Silk approximation. The curves shown are the contour lines of QWS and QBR (left-hand panel), and the contour lines of the
relative error (QWS − QBR)/QBR (right-hand panel). Q and Q denote the effective Q parameter and the stability threshold, the subscripts WS and BR refer to
Wang & Silk (1994) and Bertin & Romeo (1988). In addition, Q� and Qg are the stellar and gaseous Toomre parameters, σ� and σ g are the radial velocity
dispersions of the two components. Note how far the Wang–Silk approximation is from the correct stability threshold, except for σ g ∼ σ� (see left-hand panel).

that affects QWS is significant but below 50 per cent (see now the
right-hand panel of Fig. 2). Using the median values of s and q
computed from the galaxy data of Leroy et al. (2008), smed � 0.27
and qmed � 1.5, one finds that the typical error is about 20 per
cent. Remember, however, that a significant fraction of the data
populate the two-phase region, where the error can be more than 40
per cent. Note also that the error is negative, which means that the
Wang–Silk approximation underestimates the effective Q parameter
systematically.

2.2 Our approximation

Let us now illustrate how to find a better approximation for Q. The
first ingredient is to determine the asymptotic behaviour of Q as
s → 0 and s → 1. These are in fact the natural bounds of s. A
rigorous analysis was performed by Romeo (1985). His results can
be summarized as follows.

(i) For s 	 1 and q ≤ 1, i.e. in gas-dominated stability regimes,
Q ≈ q−1 + 2s.

(ii) For s 	 1 and q ≥ 1, i.e. in star-dominated stability regimes,
Q ≈ 1 + 2s q−1.

(iii) For s ≈ 1, i.e. in the limiting case of a one-component disc,
Q ≈ 1 + q−1.

Note that Q behaves asymptotically as a weighted sum of two
terms: 1 and q−1. Note also that the weight factors change sym-
metrically as we move from case (i) to case (iii): (2s, 1) → (1, 2s)
→ (1, 1). Such symmetry suggests that we should search for an
approximation of the form

Q =
{

W (s) + q−1 if q ≤ 1,

1 + W (s) q−1 otherwise,
(4)

where W(s) ≈ 2s as s → 0 and W(s) ≈ 1 as s → 1. A further
constraint on W(s) follows from the fact that the original system of
fluid and Poisson equations remains unaltered if we interchange the
stellar and gaseous components. Equation (4) must then be invariant
under the transformation s �→ s−1, q �→ q−1 and hence Q �→ qQ,
where qQ is the value of Qg above which the two-component disc
is locally stable. Invariance requires that W(s−1) = W(s). A simple
function that satisfies this requirement and matches the asymptotic
behaviour above is

W (s) = 2s

1 + s2
. (5)

Since Q = Q�/Q, equations (4) and (5) lead us to the following
approximation for the effective Q parameter:

1

Q
=

⎧⎪⎪⎨
⎪⎪⎩

W

Q�

+ 1

Qg
if Q� ≥ Qg ,

1

Q�

+ W

Qg
if Qg ≥ Q� ;

(6)

W = 2σ�σg

σ 2
� + σ 2

g

. (7)

Our approximation is almost as simple as the Wang–Silk approxi-
mation (equation 1), but differs from that in one important respect:
it gives less weight to the component with larger Q. The weight

C© 2011 The Authors, MNRAS 416, 1191–1196
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

 at C
halm

ers T
ekniska H

ogskola on A
pril 7, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


1194 A. B. Romeo and J. Wiegert

Figure 3. Accuracy of our approximation. The curves shown are the same as in Fig. 2, but for our effective Q parameter and stability threshold. These quantities
are denoted by Q and Q, without subscripts. Note how close our approximation is to the correct stability threshold, especially for Q � 1.2 and Q � 2 (see
left-hand panel).

factor W depends symmetrically on the radial velocity dispersions
of the two components, and is generally small.

To evaluate the accuracy of our approximation, we compare
Q(s, q) with QBR(s, q) and compute the relative error (Q −
QBR)/QBR as a function of s and q, as we did for the Wang–Silk ap-
proximation. Fig. 3 shows that Q works well in the whole parameter
space (see left-hand panel). Note in particular how successfully our
approximation reproduces the gaseous and stellar stability phases
for Q � 1.2. Fig. 3 also shows that Q overestimates the effective
stability parameter, but the error is well below 10 per cent even
inside the two-phase region (see right-hand panel). The error can
be reduced further by fine-tuning the weight factor, but the approx-
imation will no longer be consistent with the asymptotic behaviour
of the stability threshold.

2.3 How to apply our approximation to realistically thick discs

As pointed out in Section 1, the stabilizing effect of disc thickness
is usually neglected but significant. In this section, we show that our
approximation can easily be modified so as to take this effect into
account.

Romeo (1992) investigated the gravitational instability of galactic
discs taking rigorously into account two factors: (i) their vertical
structure at equilibrium; (ii) the coupling between scaleheight, h,
and vertical velocity dispersion, σ z, in the stellar and gaseous layers.
He calculated the effective Q parameter both as a function of h�

and hg, and as a function of σ z� and σ zg. He also discussed the
advantages of using σ z� and σ zg as input quantities. This effective
Q parameter has been studied further by Wiegert (2010). Hereafter
we will denote it with QWR.

Let us now illustrate how to find a simple and accurate approxi-
mation to QWR. In the infinitesimally thin case (see equation 6), the
local stability level of the disc is dominated by the component with
smaller Q. The contribution of the other component is weakened by
the W factor, which is generally small. This suggests that the effect
of thickness can be estimated reasonably well by considering each
component separately. Romeo (1994) analysed this case in detail.
The effect of thickness is to increase the stability parameter of each
component by a factor T , which depends on the ratio of vertical to
radial velocity dispersion:

T ≈ 0.8 + 0.7

(
σz

σR

)
. (8)

Equation (8) can be inferred from fig. 3 (top) of Romeo (1994) and
applies for 0.5 � σz/σR � 1, which is the usual range of velocity
anisotropy. To approximate QWR, use then equation (6) with Q� and
Qg replaced by T�Q� and TgQg:

1

Q =

⎧⎪⎪⎨
⎪⎪⎩

W

T�Q�

+ 1

TgQg
if T�Q� ≥ TgQg,

1

T�Q�

+ W

TgQg
if TgQg ≥ T�Q�,

(9)

where Q is our effective Q parameter for realistically thick discs,
W is given by equation (7) and T� and Tg are given by equa-
tion (8). Equation (9) tells us that the local stability level of the
disc is now dominated by the component with smaller TQ. The
contribution of the other component is still suppressed by the W
factor.

The left-hand panel of Fig. 4 shows the error map ofQ for a galac-
tic disc with (σ z/σ R)� = 0.5 and (σ z/σ R)g = 1, and the corresponding
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The effective stability parameter for two-component galactic discs 1195

Figure 4. Accuracy of our approximation (left-hand panel) versus accuracy of the Wang–Silk approximation (right-hand panel) for realistically thick discs.
The curves shown are the contour lines of the relative errors (Q − QWR)/QWR (see left-hand panel) and (QWS − QWR)/QWR (see right-hand panel) for
(σ z/σR)� = 0.5 and (σ z/σR)g = 1. Here Q is our effective Q parameter, QWR is the effective Q parameter of Romeo (1992) and Wiegert (2010), QWS is the
effective Q parameter of Wang & Silk (1994) and σ z/σR is the ratio of vertical to radial velocity dispersion. The rest of the notations are the same as in Figs
1–3. Also shown is the corresponding two-phase region (dashed lines). The boundaries of this region and the transition line intersect at (s, q) � (0.16, 0.74),
where the stability threshold is QWR � 1.3.

Figure 5. The stability level of nearby star-forming spirals, as measured by two diagnostics: the gaseous Toomre parameter, Qg, and our effective Q parameter,
Q (see equation 9). The galaxy data are from Leroy et al. (2008), R is the galactocentric distance and R25 is the optical radius. In the right-hand panel, the data
are colour-coded so as to show whether the stability level is gas dominated or star dominated, as predicted by equation (9). The two data points that lie well
below the critical stability level tell us that the nuclear region of NGC 6946 is subject to strong gas-dominated instabilities. This is consistent with the fact that
NGC 6946 hosts a nuclear starburst (e.g. Engelbracht et al. 1996).

two-phase region (Wiegert 2010). Note that the error is below 15 per
cent even inside this region, which confirms the high accuracy of our
approximation in this more realistic context. What about the accu-
racy of the Wang–Silk approximation? The right-hand panel of Fig.
4 shows that the relative error (QWS − QWR)/QWR is much larger
than ours, and can be well above 50 per cent inside the two-phase
region.

2.4 Application to nearby star-forming spirals

In this section, we show how to use our effective Q parameter
for measuring the stability level of galactic discs, and why such a
diagnostic is more predictive than the classical Toomre parameter.

We consider the same sample of spiral galaxies as in Section 2.1,
and refer to Leroy et al. (2008) for a detailed description of the data

C© 2011 The Authors, MNRAS 416, 1191–1196
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and their translation into physical quantities. For each galaxy, we
compute the radial profile of our effective Q parameter, Q, using
equation (9). We adopt (σ z/σ R)� = 0.6, as was assumed by Leroy
et al. (2008), and (σ z/σ R)g = 1, as is natural for a collisional com-
ponent. We also compute the radial profile of the gaseous Toomre
parameter, Qg, which is the traditional diagnostic used for predict-
ing star formation thresholds in galaxies (e.g. Quirk 1972; Kennicutt
1989; Martin & Kennicutt 2001; Schaye 2008; Elmegreen 2011).

Fig. 5 shows Qg(R) and Q(R) for the whole galaxy sample. Note
that Qg spans a much wider range of values than Q at any given
R. This is true even at distances as large as the optical radius, R25,
where Qg is supposed to be a reliable diagnostic. A similar fact was
noted by Leroy et al. (2008), using an effective Q parameter that
neglects the stabilizing effect of disc thickness (Jog 1996; Rafikov
2001). Why are Qg and Q so weakly correlated across the entire
optical disc? Equation (9) helps us to clarify this point. It tells us
that the value of Q is dominated by the gaseous component if TgQg

< T�Q�, and by the stellar component if T�Q� < TgQg. In the right-
hand panel of Fig. 5, we have colour-coded the data so as to show
whether TgQg < T�Q� or vice versa. It turns out that in 92 per cent
of the cases the value of Q is dominated by the stellar component.
Gas dominates the stability level only in 8 per cent of the cases. This
is why Qg and Q are so weakly correlated. This result illustrates (i)
how important it is to consider both gas and stars when measuring
the stability level of galactic discs and (ii) the strong advantage of
using our effective Q parameter as a stability diagnostic.

3 C O N C L U S I O N S

(i) The approximation of Wang & Silk (1994) (equation 1) un-
derestimates the effective Q parameter. The error is typically 20 per
cent, but can be as large as 40 per cent or more if σ g � 0.2σ � and Qg

∼ Q�. In this case, the gaseous and stellar components should con-
tribute separately to the gravitational instability of the disc (Bertin
& Romeo 1988). But such dynamical decoupling is difficult to ap-
proximate because it involves two stability regimes, one dominated
by the gas and the other dominated by the stars, and because there
is a sharp transition between the two ‘phases’. So it is not strange
that the Wang–Silk approximation becomes less accurate when σ g

� 0.2σ � and Qg ∼ Q�.
(ii) Our approximation (equation 6) overestimates the effective Q

parameter, but the error is less than 9 per cent and typically as small
as 4 per cent. The accuracy and simplicity of our approximation
result from a rigorous analysis, which takes into account the stability
characteristics of the disc as well as the symmetries of the problem.

(iii) We provide a simple recipe for applying our approximation
to realistically thick discs (see equation 9). The ratio of vertical to
radial velocity dispersion is usually 0.5 for the stars and 1 for the
gas. In this case, our approximation is in error by less than 15 per
cent, whereas the Wang–Silk approximation can be in error by more
than 50 per cent. Note also that the effective Q parameter is 20–50
per cent larger than in the infinitesimally thin case. Thus the effect
of thickness is important and should be taken into account when
analysing the stability of galactic discs.
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