2,244 research outputs found
Testing production scenarios for (anti-)(hyper-)nuclei with multiplicity-dependent measurements at the Lhcâ
The production of light anti- and hyper-nuclei provides unique observables to characterise the system created in high-energy protonâproton (pp), protonânucleus (pA) and nucleusânucleus (AA) collisions. In particular, nuclei and hyper-nuclei are special objects with respect to non-composite hadrons (such as pions, kaons, protons, etc.), because their size is comparable to a fraction or the whole system created in the collision. Their formation is typically described within the framework of coalescence and thermal-statistical production models. In order to distinguish between the two production scenarios, we propose to measure the coalescence parameter BA for different anti- and hyper-nuclei (that differ by mass, size and internal wave function) as a function of the size of the particle emitting source. The latter can be controlled by performing systematic measurements of light anti- and hyper-nuclei in different collision systems (pp, pA, AA) and as a function of the multiplicity of particles created in the collision. While it is often argued that the coalescence and the thermal model approach give very similar predictions for the production of light nuclei in heavy-ion collisions, our study shows that large differences can be expected for hyper-nuclei with extended wave functions, as the hyper-triton. We compare the model predictions with data from the ALICE experiment and we discuss perspectives for future measurements with the upgraded detectors during the High-Luminosity LHC phase in the next decade
Testing production scenarios for (anti-)(hyper-)nuclei and exotica at energies available at the CERN Large Hadron Collider
We present a detailed comparison of coalescence and thermal-statistical models for the production of (anti-) (hyper-)nuclei in high-energy collisions. For the first time, such a study is carried out as a function of the size of the object relative to the size of the particle emitting source. Our study reveals large differences between the two scenarios for the production of objects with extended wave functions. While both models give similar predictions and show similar agreement with experimental data for (anti-)deuterons and (anti-)He3 nuclei, they largely differ in their description of (anti-)hypertriton production. We propose to address experimentally the comparison of the production models by measuring the coalescence parameter systematically for different (anti-)(hyper-)nuclei in different collision systems and differentially in multiplicity. Such measurements are feasible with the current and upgraded Large Hadron Collider experiments. Our findings highlight the unique potential of ultrarelativistic heavy-ion collisions as a laboratory to clarify the internal structure of exotic QCD objects and can serve as a basis for more refined calculations in the future
Examination of coalescence as the origin of nuclei in hadronic collisions
The origin of weakly bound nuclear clusters in hadronic collisions is a key question to be addressed by heavy-ion collision (HIC) experiments. The measured yields of clusters are approximately consistent with expectations from phenomenological statistical hadronization models (SHMs), but a theoretical understanding of the dynamics of cluster formation prior to kinetic freeze-out is lacking. The competing model is nuclear coalescence, which attributes cluster formation to the effect of final state interactions (FSI) during the propagation of the nuclei from kinetic freeze-out to the observer. This phenomenon is closely related to the effect of FSI in imprinting femtoscopic correlations between continuum pairs of particles at small relative momentum difference. We give a concise theoretical derivation of the coalescence-correlation relation, predicting nuclear cluster spectra from femtoscopic measurements. We review the fact that coalescence derives from a relativistic Bethe-Salpeter equation, and recall how effective quantum mechanics controls the dynamics of cluster particles that are nonrelativistic in the cluster center-of-mass frame. We demonstrate that the coalescence-correlation relation is roughly consistent with the observed cluster spectra in systems ranging from PbPb to pPb and pp collisions. Paying special attention to nuclear wave functions, we derive the coalescence prediction for the hypertriton and show that it, too, is roughly consistent with the data. Our work motivates a combined experimental programme addressing femtoscopy and cluster production under a unified framework. Upcoming pp, pPb, and peripheral PbPb data analyzed within such a program could stringently test coalescence as the origin of clusters
Particle Production at Large Transverse Momentum with ALICE
We present transverse momentum distributions of inclusive charged particles
and identified hadrons in and Pb--Pb collisions at \rs= 2.76 TeV,
measured by ALICE at the LHC. The Pb--Pb data are presented in intervals of
collision centrality and cover transverse momenta up to 50 GeV/. Nuclear
medium effects are studied in terms of the nuclear modification factor \raa.
The results indicate a strong suppression of high- particles in Pb--Pb
collisions, consistent with a large energy loss of hard-scattered partons in
the hot, dense and long-lived medium created at the LHC. We compare the
preliminary results for inclusive charged particles to previous results from
RHIC and calculations from energy loss models. Furthermore, we compare the
nuclear modification factors of inclusive charged particles to those of
identified , , K, and .Comment: Talk given at Quark Matter 2011 conferenc
The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events
The design, construction, and commissioning of the ALICE Time-Projection
Chamber (TPC) is described. It is the main device for pattern recognition,
tracking, and identification of charged particles in the ALICE experiment at
the CERN LHC. The TPC is cylindrical in shape with a volume close to 90 m^3 and
is operated in a 0.5 T solenoidal magnetic field parallel to its axis.
In this paper we describe in detail the design considerations for this
detector for operation in the extreme multiplicity environment of central
Pb--Pb collisions at LHC energy. The implementation of the resulting
requirements into hardware (field cage, read-out chambers, electronics),
infrastructure (gas and cooling system, laser-calibration system), and software
led to many technical innovations which are described along with a presentation
of all the major components of the detector, as currently realized. We also
report on the performance achieved after completion of the first round of
stand-alone calibration runs and demonstrate results close to those specified
in the TPC Technical Design Report.Comment: 55 pages, 82 figure
Charge separation relative to the reaction plane in Pb-Pb collisions at TeV
Measurements of charge dependent azimuthal correlations with the ALICE
detector at the LHC are reported for Pb-Pb collisions at TeV. Two- and three-particle charge-dependent azimuthal correlations in
the pseudo-rapidity range are presented as a function of the
collision centrality, particle separation in pseudo-rapidity, and transverse
momentum. A clear signal compatible with a charge-dependent separation relative
to the reaction plane is observed, which shows little or no collision energy
dependence when compared to measurements at RHIC energies. This provides a new
insight for understanding the nature of the charge dependent azimuthal
correlations observed at RHIC and LHC energies.Comment: 12 pages, 3 captioned figures, authors from page 2 to 6, published
version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/286
Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at = 5.02 TeV
Two-particle angular correlations between unidentified charged trigger and
associated particles are measured by the ALICE detector in p-Pb collisions at a
nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum
range 0.7 5.0 GeV/ is examined,
to include correlations induced by jets originating from low
momen\-tum-transfer scatterings (minijets). The correlations expressed as
associated yield per trigger particle are obtained in the pseudorapidity range
. The near-side long-range pseudorapidity correlations observed in
high-multiplicity p-Pb collisions are subtracted from both near-side
short-range and away-side correlations in order to remove the non-jet-like
components. The yields in the jet-like peaks are found to be invariant with
event multiplicity with the exception of events with low multiplicity. This
invariance is consistent with the particles being produced via the incoherent
fragmentation of multiple parton--parton scatterings, while the yield related
to the previously observed ridge structures is not jet-related. The number of
uncorrelated sources of particle production is found to increase linearly with
multiplicity, suggesting no saturation of the number of multi-parton
interactions even in the highest multiplicity p-Pb collisions. Further, the
number scales in the intermediate multiplicity region with the number of binary
nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/161
Multi-particle azimuthal correlations in p-Pb and Pb-Pb collisions at the CERN Large Hadron Collider
Measurements of multi-particle azimuthal correlations (cumulants) for charged
particles in p-Pb and Pb-Pb collisions are presented. They help address the
question of whether there is evidence for global, flow-like, azimuthal
correlations in the p-Pb system. Comparisons are made to measurements from the
larger Pb-Pb system, where such evidence is established. In particular, the
second harmonic two-particle cumulants are found to decrease with multiplicity,
characteristic of a dominance of few-particle correlations in p-Pb collisions.
However, when a gap is placed to suppress such correlations,
the two-particle cumulants begin to rise at high-multiplicity, indicating the
presence of global azimuthal correlations. The Pb-Pb values are higher than the
p-Pb values at similar multiplicities. In both systems, the second harmonic
four-particle cumulants exhibit a transition from positive to negative values
when the multiplicity increases. The negative values allow for a measurement of
to be made, which is found to be higher in Pb-Pb collisions at
similar multiplicities. The second harmonic six-particle cumulants are also
found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find
which is indicative of a Bessel-Gaussian
function for the distribution. For very high-multiplicity Pb-Pb
collisions, we observe that the four- and six-particle cumulants become
consistent with 0. Finally, third harmonic two-particle cumulants in p-Pb and
Pb-Pb are measured. These are found to be similar for overlapping
multiplicities, when a gap is placed.Comment: 25 pages, 11 captioned figures, 3 tables, authors from page 20,
published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/87
- âŠ