706 research outputs found

    Particle Identification in the ALICE Experiment

    Full text link
    The particle identification capabilities of the ALICE experiment are unique among the four major LHC experiments. The working principles and excellent performance of the central barrel detectors in a high-multiplicity environment are presented as well as two physics examples: the extraction of transverse momentum spectra of charged pions, kaons, protons, and the observation of the anti-4He-nucleus.Comment: Quark Matter 2011 Proceeding

    Confronting fluctuations of conserved charges in central nuclear collisions at the LHC with predictions from Lattice QCD

    Full text link
    We construct net baryon number and strangeness susceptibilities as well as correlations between electric charge and strangeness from experimental data of the ALICE Collaboration at the CERN LHC. The data were taken in Pb-Pb collisions at sNN\sqrt{s_{NN}}=2.76 TeV. The resulting fluctuations and correlations are consistent with Lattice QCD results at the chiral crossover pseudocritical temperature Tc155T_c\simeq 155 MeV. This agreement lends strong support to the assumption that the fireball created in these collisions is of thermal origin and exhibits characteristic properties expected in QCD at the transition from the quark gluon plasma to the hadronic phase. The volume of the fireball for one unit of rapidity at TcT_c is found to exceed 4000 fm3^3. A detailed discussion on uncertainties in the temperature and volume of the fireball is presented. The results are linked to pion interferometry measurements and predictions from percolation theory.Comment: 7 pages, 4 figures Accepted for publication in PL

    Deuteron production in Pb-Pb collisions measured with ALICE at the LHC

    Get PDF

    On coalescence as the origin of nuclei in hadronic collisions

    Full text link
    The origin of weakly-bound nuclear clusters in hadronic collisions is a key question to be addressed by heavy-ion collision (HIC) experiments. The measured yields of clusters are approximately consistent with expectations from phenomenological statistical hadronisation models (SHMs), but a theoretical understanding of the dynamics of cluster formation prior to kinetic freeze out is lacking. The competing model is nuclear coalescence, which attributes cluster formation to the effect of final state interactions (FSI) during the propagation of the nuclei from kinetic freeze out to the observer. This phenomenon is closely related to the effect of FSI in imprinting femtoscopic correlations between continuum pairs of particles at small relative momentum difference. We give a concise theoretical derivation of the coalescence--correlation relation, predicting nuclear cluster spectra from femtoscopic measurements. We review the fact that coalescence derives from a relativistic Bethe-Salpeter equation, and recall how effective quantum mechanics controls the dynamics of cluster particles that are nonrelativistic in the cluster centre of mass frame. We demonstrate that the coalescence--correlation relation is roughly consistent with the observed cluster spectra in systems ranging from PbPb to pPb and pp collisions. Paying special attention to nuclear wave functions, we derive the coalescence prediction for hypertriton and show that it, too, is roughly consistent with the data. Our work motivates a combined experimental programme addressing femtoscopy and cluster production under a unified framework. Upcoming pp, pPb and peripheral PbPb data analysed within such a programme could stringently test coalescence as the origin of clusters.Comment: 24 pages, 10 figure

    Asynchronous coupling of hybrid models for efficient simulation of multiscale systems

    Get PDF
    We present a new coupling approach for the time advancement of multi-physics models of multiscale systems. This extends the method of E et al. (2009) [5] to deal with an arbitrary number of models. Coupling is performed asynchronously, with each model being assigned its own timestep size. This enables accurate long timescale predictions to be made at the computational cost of the short timescale simulation. We propose a method for selecting appropriate timestep sizes based on the degree of scale separation that exists between models. A number of example applications are used for testing and benchmarking, including a comparison with experimental data of a thermally driven rarefied gas flow in a micro capillary. The multiscale simulation results are in very close agreement with the experimental data, but are produced almost 50,000 times faster than from a conventionally-coupled simulation

    Forward-central two-particle correlations in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    Two-particle angular correlations between trigger particles in the forward pseudorapidity range (2.5 2GeV/c. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B. V.Peer reviewe

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Azimuthal anisotropy of charged jet production in root s(NN)=2.76 TeV Pb-Pb collisions

    Get PDF
    We present measurements of the azimuthal dependence of charged jet production in central and semi-central root s(NN) = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as nu(ch)(2) (jet). Jet finding is performed employing the anti-k(T) algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero nu(ch)(2) (jet) is observed in semi-central collisions (30-50% centrality) for 20 <p(T)(ch) (jet) <90 GeV/c. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the nu(2) of single charged particles at high p(T). Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe
    corecore