136 research outputs found
Extraordinary electrical conductance through amorphous non-conducting polymers under vibrational strong coupling
Achieving electrical conductance in amorphous non-doped polymers is a
challenging task. Here, we show that vibrational strong coupling of the
aromatic C-H(D) out-of-plane bending modes of polystyrene, deuterated
polystyrene, and poly (benzyl methacrylate) to the vacuum electromagnetic field
of the cavity enhance the electrical conductivity by at least six orders of
magnitude compared to the uncoupled polymers. The conductance is thermally
activated at the onset of strong coupling. It becomes temperature and cavity
path length independent at the highest coupling strengths, giving rise to the
extraordinary electrical conductance in these polymers. The electrical
characterizations are performed without external light excitation,
demonstrating the role of quantum light in enhancing the long-range coherent
transport even in amorphous non-conducting polymers.Comment: Sunil Kumar and Subha Biswas contributed equall
A quantum circuit rule for interference effects in single-molecule electrical junctions
A quantum circuit rule for combining quantum interference effects in the conductive properties of oligo(phenyleneethynylene) (OPE)-type molecules possessing three aromatic rings was investigated both experimentally and theoretically. Molecules were of the type X-Y-X, where X represents pyridyl anchors with para (p), meta (m) or ortho (o) connectivities and Y represents a phenyl ring with p and m connectivities. The conductances GXmX (GXpX) of molecules of the form X-m-X (X-p-X), with meta (para) connections in the central ring, were predominantly lower (higher), irrespective of the meta, para or ortho nature of the anchor groups X, demonstrating that conductance is dominated by the nature of quantum interference in the central ring Y. The single-molecule conductances were found to satisfy the quantum circuit rule Gppp/Gpmp=Gmpm/Gmmm. This demonstrates that the contribution to the conductance from the central ring is independent of the para versus meta nature of the anchor groups
A Molecular Platinum Cluster Junction: A Single-Molecule Switch
We present a theoretical study of the electronic transport through
single-molecule junctions incorporating a Pt6 metal cluster bound within an
organic framework. We show that the insertion of this molecule between a pair
of electrodes leads to a fully atomically engineered nano-metallic device with
high conductance at the Fermi level and two sequential high on/off switching
states. The origin of this property can be traced back to the existence of a
HOMO which consists of two degenerate and asymmetric orbitals, lying close in
energy to the Fermi level of the metallic leads. Their degeneracy is broken
when the molecule is contacted to the leads, giving rise to two resonances
which become pinned close to the Fermi level and display destructive
interference.Comment: 4 pages, 4 figures. Reprinted (adapted) with permission from J. Am.
Chem. Soc., 2013, 135 (6), 2052. Copyright 2013 American Chemical Societ
Tuning the thermoelectrical properties of anthracene-based self-assembled monolayers
It is known that the electrical conductance of single molecules can be controlled in a deterministic manner by chemically varying their anchor groups to external electrodes. Here, by employing synthetic methodologies to vary the terminal anchor groups around aromatic anthracene cores, and by forming self-assembled monolayers (SAMs) of the resulting molecules, we demonstrate that this method of control can be translated into cross-plane SAM-on-gold molecular films. The cross-plane conductance of SAMs formed from anthracene-based molecules with four different combinations of anchors are measured to differ by a factor of approximately 3 in agreement with theoretical predictions. We also demonstrate that the Seebeck coefficient of such films can be boosted by more than an order of magnitude by an appropriate choice of anchor groups and that both positive and negative Seebeck coefficients can be realised. This demonstration that the thermoelectric properties of SAMs are controlled by their anchor groups represents a critical step towards functional ultra-thin-film devices for future molecular-scale electronic
Synthesis and Single-Molecule Conductance Study of Redox-Active Ruthenium Complexes with Pyridyl and Dihydrobenzo[b]thiophene Anchoring Groups
The ancillary ligands 4′-(4-pyridyl)-2,2′:6′,2′′-terpyridine and 4′-(2,3-dihydrobenzo[b]thiophene)-2,2′-6′,2“-terpyridine were used to synthesize two series of mono- and dinuclear ruthenium complexes differing in their lengths and anchoring groups. The electrochemical and single-molecular conductance properties of these two series of ruthenium complexes were studied experimentally by means of cyclic voltammetry and the scanning tunneling microscopy-break junction technique (STM-BJ) and theoretically by means of density functional theory (DFT). Cyclic voltammetry data showed clear redox peaks corresponding to both the metal- and ligand-related redox reactions. Single-molecular conductance demonstrated an exponential decay of the molecular conductance with the increase in molecular length for both the series of ruthenium complexes, with decay constants of βPY=2.07±0.1 nm−1 and βBT=2.16±0.1 nm−1, respectively. The contact resistance of complexes with 2,3-dihydrobenzo[b]thiophene (BT) anchoring groups is found to be smaller than the contact resistance of ruthenium complexes with pyridine (PY) anchors. DFT calculations support the experimental results and provided additional information on the electronic structure and charge transport properties in those metal|ruthenium complex|metal junctions
Radical Enhanced Charge Transport in Single-Molecule Phenothiazine Electrical Junctions
We studied the single-molecule conductance through an acid oxidant triggered phenothiazine (PTZ-) based radical junction using the mechanically controllable break junction technique. The electrical conductance of the radical state was enhanced by up to 200 times compared to the neutral state, with high stability lasting for at least two months and high junction formation probability at room-temperature. Theoretical studies revealed that the conductance increase is due to a significant decrease of the HOMO–LUMO gap and also the enhanced transmission close to the HOMO orbital when the radical forms. The large conductance enhancement induced by the formation of the stable PTZ radical molecule will lead to promising applications in single-molecule electronics and spintronics
Electrochemical CO2 Reduction - A Critical View on Fundamentals, Materials and Applications
The electrochemical reduction of CO2 has been extensively studied over the past decades. Nevertheless, this topic has been tackled so far only by using a very fundamental approach and mostly by trying to improve kinetics and selectivities toward specific products in half-cell configurations and liquid-based electrolytes. The main drawback of this approach is that, due to the low solubility of CO2 in water, the maximum CO2 reduction current which could be drawn falls in the range of 0.01–0.02 A cm–2. This is at least an order of magnitude lower current density than the requirement to make CO2-electrolysis a technically and economically feasible option for transformation of CO2 into chemical feedstock or fuel thereby closing the CO2 cycle. This work attempts to give a short overview on the status of electrochemical CO2 reduction with respect to challenges at the electrolysis cell as well as at the catalyst level. We will critically discuss possible pathways to increase both operating current density and conversion efficiency in order to close the gap with established energy conversion technologies
Insulated molecular wires: inhibiting orthogonal contacts in metal complex based molecular junctions
Metal complexes are receiving increased attention as molecular wires in fundamental studies of the transport properties of metal|molecule|metal junctions. In this context we report the single-molecule conductance of a systematic series of d8 square-planar platinum(II) trans-bis(alkynyl) complexes with terminal trimethylsilylethynyl (C[triple bond, length as m-dash]CSiMe3) contacting groups, e.g. trans-Pt{C[triple bond, length as m-dash]CC6H4C[triple bond, length as m-dash]CSiMe3}2(PR3)2 (R = Ph or Et), using a combination of scanning tunneling microscopy (STM) experiments in solution and theoretical calculations using density functional theory and non-equilibrium Green's function formalism. The measured conductance values of the complexes (ca. 3–5 × 10−5G0) are commensurate with similarly structured all-organic oligo(phenylene ethynylene) and oligo(yne) compounds. Based on conductance and break-off distance data, we demonstrate that a PPh3 supporting ligand in the platinum complexes can provide an alternative contact point for the STM tip in the molecular junctions, orthogonal to the terminal C[triple bond, length as m-dash]CSiMe3 group. The attachment of hexyloxy side chains to the diethynylbenzene ligands, e.g. trans-Pt{C[triple bond, length as m-dash]CC6H2(Ohex)2C[triple bond, length as m-dash]CSiMe3}2(PPh3)2 (Ohex = OC6H13), hinders contact of the STM tip to the PPh3 groups and effectively insulates the molecule, allowing the conductance through the full length of the backbone to be reliably measured. The use of trialkylphosphine (PEt3), rather than triarylphosphine (PPh3), ancillary ligands at platinum also eliminates these orthogonal contacts. These results have significant implications for the future design of organometallic complexes for studies in molecular junctions
- …